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Abstract 

 

Peas (Pisum sativum L.) are valuable protein sources for both human food and livestock feed, while 

also contributing to soil fertility. However, the higher frequency of global droughts has negatively 

impacted pea yield and protein content. To address this, breeding programs must prioritize 

enhancing pea adaptation and resilience to drought stress. In this regard, image-based high-

throughput phenotyping platforms offer an efficient solution for screening large populations, 

enabling non-destructive acquisition of numerous phenotypic traits. Multimodal camera systems, 

such as (i) RGB imaging for architecture and morphology, (ii) spectral imaging for pigment 

contents, and (iii) chlorophyll fluorescence imaging for photosynthesis, provide diverse image-

based phenotypic data. Such types of data have proven valuable for developing biomass estimation 

models, crucial for monitoring crop growth and yield predictions. However, existing studies 

predominantly focus on using a single type of camera system for biomass estimation. Since 

different camera systems detect distinct types of plant characteristics, the ability to combine 

different types of phenotypic traits could be a potential approach to enhance biomass estimation 

models. To explore this, a greenhouse experiment was conducted to evaluate 180 pea genotypes 

responses to drought using multimodal image-based phenotyping. Subsequently, biomass 

estimation models were developed using single type and multiple types of traits. The results 

indicated that pea plants exhibited greater biomass under control than drought conditions, 

consistent with digital biomass derived from RGB imaging. However, unexpected outcomes were 

observed in color, reflectance, and photosynthesis traits, potentially influenced by the plant's 

growth stage during measurement and the experimental water regimes. Combining different types 

of image-based phenotypic traits in multiple trait models yielded slight improvements in biomass 

estimation model accuracy (R2 = 0.79, RMSE = 0.73) compared to models using a single trait type 

(R2 = 0.76, RMSE = 0.68). This study highlights the limitations as well as the potential of 

combining different traits to enhance biomass estimation accuracy and discusses the approach for 

advancing plant phenotyping capabilities. 

Keywords:  biomass estimation / chlorophyll fluorescence / high-throughput phenotyping / 

image-based phenotypic traits / spectral imaging / pea 
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Chapter 1: Introduction 

 

1.1 Impact of drought in pea cultivation 

Pea (Pisum sativum L.) is a multipurpose crop and is ranked as the fourth most cultivated pulse 

crop in the world (Pandey et al., 2021). Peas are an important source of protein and have been used 

as livestock feed and human food for centuries (Rubiales et al., 2015). In addition, peas improve 

soil fertility and play a role in the nitrogen cycle by fixing atmospheric nitrogen to the soil through 

symbiotic interactions with soil-borne bacteria (Poore et al., 2018). In the current context of 

climate change, unpredictable weather patterns, reduced precipitation, and fluctuations in rainfall 

have led to more frequent droughts worldwide (Fahad et al., 2017; Jaghdani et al., 2021). As a 

result, pea yield and protein content are unstable, and the cultivated area of pea has decreased 

(Cernay et al., 2015). Under drought conditions, plants generally respond by closing their stomata 

to reduce water loss, which can decrease photosynthesis and lead to a reduction in biomass 

accumulation and yield production (Chaves et al., 2003; Xu et al., 2010). Therefore, it is important 

for breeding programs to improve pea adaptation and resilience to drought stress (Rubiales et al., 

2015). Hence, the ability to identify these traits in large quantities of phenotypic data is required 

to keep up genomic data (Reynolds et al., 2019). High-throughput phenotyping platforms could be 

efficient tools for screening large populations, which would increase the acquisition of phenotypic 

data, reduce the gap between genomic and phenomic data and become helpful tools for breeding 

programs (Crain et al., 2018). 

 

1.2 High-throughput phenotyping 

A high-throughput phenotyping platform has great potential in improving the accuracy, efficiency, 

speed, and quality of determining crop growth and development compared to conventional 

phenotyping (Pabuayon et al., 2019). Additionally, it enables the acquisition of numerous 

phenotypic traits using digital and automated methods. Image-based high-throughput phenotyping 
assists in the computation of phenotypes by analyzing a large number of plants in a short time 

interval (Das Choudhury et al., 2016; Das Choudhury et al., 2018). Furthermore, the images 

provide spatial variation of information at the whole-plant level, which provides data that is 

difficult to measure using conventional phenotyping. The progress of current analytical techniques 
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has significantly contributed to high-throughput plant phenotyping (Campbell et al., 2018; Yang 

et al., 2020; Singh et al., 2021; Song et al., 2021).  Image-based phenotyping, captured by 

multimodal cameras providing different valuable information of plants mechanisms. There are 

three types of camera systems in this experiment and often used in similar experiments elsewhere 

in image-based phenotyping, such as (i) RGB sideview imaging, (ii) spectral imaging (SI), and 

(iii) chlorophyll fluorescence (CF) imaging (Figure 1.1). 

 

     

Figure 1.1 The images of pea (genotype Sp094) captured using different camera systems: RGB sideview 

imaging (left); spectral imaging (middle); chlorophyll fluorescence imaging (right). 

  

RGB sideview imaging, the first type of image-based phenotyping, provides information on plant’s 

shape and area. The extracted traits from these images can be linked to several conventional plant 

traits such as morphological and architectural traits. The number of plant pixels in an image can 

be interpreted as plant biomass, often multiple views of a plant are captured by a turn-table. 

Moreover, traits extracted from RGB sideview imaging can be linked to shape and density of 

plants, which is useful for monitoring plant growth and development (Anandan et al., 2020; Kim 

et al., 2020).  

The second type is spectral imaging (SI), a technique that combines spectroscopy with digital 

imaging to scan multiple spectra and analyze discrete bands of wavelengths within electromagnetic 

spectrum. It provides diverse information on pigments (e.g. chlorophyll, carotenoids), water, 

nutrients, proteins, and carbohydrates, allowing for a more comprehensive understanding of plant 
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physiology and biochemistry. Spectral indices derived from different wavelengths can be used to 

study plant responses to stressors and estimate foliar traits and biomass. While SI provides 

chemical and physiological insights, it does not necessarily provide specific details on plant 

mechanisms (Polder et al., 2021; Michelon et al., 2023; Cotrozzi & Couture, 2020; Kim et al., 

2011; Couture et al., 2013; Serbin et al., 2015; Kumar et al., 2021). 

The third type is chlorophyll fluorescence (CF) imaging, which focuses on the functioning of 

photosystem II (PSII) and measures the light emitted by green plant tissue when illuminated with 

specific wavelengths. It provides information about photosynthesis and the photosynthetic activity 

of PSII. Additionally, CF imaging is effective in assessing plant stress and has been used to 

determine photosynthetic traits and detect early stress symptoms in high-throughput phenotyping 

(Baker, 2008; Porcar-Castell et al., 2014; Maxwell & Johnson, 2000; Murchie & Lawson, 2013; 

Kumar et al., 2021; Kalaji et al., 2017; Chaerle et al., 2003). 

 

1.3 Image-based biomass estimation model 

Image-based phenotypic traits can also determine plant biomass without the need for a destructive 

harvest (Furbank et al., 2011; Neumann et al., 2015). This method is widely used in agriculture, 

and both linear and non-linear models are utilized to estimate biomass (Tackenberg, 2007; 

Golzarian et al., 2011; Rahaman et al., 2017). Linear models based on plant area are more effective 

than non-linear models, but their estimation error is too large for accurate biomass estimation 

(Leister et al., 1999; Golzarian et al., 2011). Apart from plant area derived from 2D RGB sideview 

imaging, there are other significant traits that also affect plant growth and biomass should be taken 

into consideration. Rahaman et al. (2017) proposed the linear biomass model as a function of plant 

area, plant compactness, and plant age. The results of that study confirmed that including more 

significant traits can improve biomass estimation accuracy of the model. However, the traits used 

in this study derived from the same camera systems which is 2D RGB sideview imaging. The 

interesting question is if the combination of other traits from different types of camera systems 

improves biomass estimation. Therefore, an alternative method for estimating biomass that 

considers other traits in addition to RGB sideview imaging is needed.   
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1.4 The combination of multiple traits for phenotyping improvement 

RGB sideview imaging, spectral imaging traits (SI), and chlorophyll fluorescence (CF) imaging 

have been proved their effectiveness for phenotyping individually (Li et al., 2010; Feng et al., 

2018). RGB sideview imaging has a strong relationship with plant architecture and morphology. 

SI information has an advantage with regard to monitoring general compositions of various plants 

mechanisms and nutrient contents, while CF has a strong relationship with photosynthesis, which 

are both related to biomass production. However, there are a few studies that focus on the 

combination of these different types of imaging using for plant phenotyping and biomass 

estimation. Since each type of imaging reflects different mechanisms of plants, the combination 

of different types of imaging could increase potential of phenotyping (Römer et al., 2012; Zhang 

et al., 202). Some studies have attempted to test the performances of combination of data acquired 

by different types of imaging. For example, at the agricultural-field level, the fusion of Light 

Detection and Ranging (LiDAR), a 3D shape analysis technique, and spectral data showed the 

highest biomass estimation accuracy of maize (Wang et al., 2016). Another study on Fusarium 

head blight of wheat indicated that the combination of SI and CF is more suitable for disease 

detection than using single data type methods (Mahlein et al., 2019). Instead of considering only 

traits derived from RGB imaging, it is possible that the combination of RGB imaging with either 

SI or CF or both could be a potential approach to improve the accuracy of biomass estimation, 

which could increase capability of plant phenotyping.  

 

1.5 Research aims and research questions 

This study aims to assess whether combination of RBG sideview imaging with spectral imaging 

traits (SI) and chlorophyll fluorescence (CF) improves the accuracy of biomass estimation models 

for pea plants under drought conditions. The hypothesis is that combining traits from RGB 

sideview imaging with either traits from SI or CF or both is expected to enhance biomass 

estimation accuracy. Each type of trait captures different plant characteristics related to biomass 

accumulation. RGB sideview imaging directly reflects morphology and architecture for plants. It 

is expected to have a high correlation with harvested biomass and contribute most to biomass 

estimation accuracy. SI captures reflectance from various plant nutrients and pigments, while CF 

captures fluorescence emitted from photosynthetic activity. Hence, these two types of imaging are 
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also expected to have correlations with harvested biomass, but not higher than traits from RGB 

sideview imaging. Combining all possible traits from RGB sideview imaging, SI, and CF is 

expected to yield the highest accuracy in biomass estimation. On the other hand, combining RGB 

sideview imaging with either SI or CF is expected to result in a lower biomass estimation accuracy, 

although it is still higher than using only RGB sideview imaging. This study will therefore 

investigate one main research question and two sub-research questions, which are: 

 

Main research question: 

1. Can the combination of RGB sideview traits with spectral topview imaging traits, and 

chlorophyll fluorescence traits improve the accuracy of biomass estimation model of pea 

under drought stress?  

 

Sub research questions: 

1.1 Is there a relationship among harvested biomass, RGB sideview traits, spectral topview 

imaging traits, and chlorophyll fluorescence traits in pea under drought stress? 

1.2 Which image-based phenotypic traits is contributing most to the highest accuracy of 

biomass estimation model?
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Chapter 2: Materials and methods 
 

This research consists of four parts. First, a greenhouse experiment was conducted with 180 pea 

genotypes at two different levels of water supply. Second, all plants were measured for image-

based traits using different camera systems, and the plants were destructively harvested for 

biomass traits. Third, imaging data was extracted, and the data was then used for the data analysis. 

The mean differences in each trait between plants grown in control and drought conditions was 

investigated. Additionally, the correlation between image-based traits and the biomass of the 

destructive harvest was determined. Fourth, biomass estimation models were formulated and 

evaluated. The conceptual research framework is shown in Figure 2.1, and the details of each 

method are described in the following sections. 

 

 

Figure 2.1 Research framework summarized in the approach. Short description of methodology. 

Abbreviations: FC: Field Capacity, NPEC: the Netherlands Plant Eco-phenotyping Centre. 

 

2.1 Experimental design 

A pot experiment was conducted in an environmentally controlled greenhouse (the Netherlands 

Plant Eco-phenotyping Centre (NPEC) greenhouse, Wageningen University and Research, the 

Netherlands). There were two factors in this study, which were pea genotypes and water irrigation. 
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Pea genotypes selected for this experiment based on their high level of protein in pea seeds were 

180 genotypes in total. Two treatments of water irrigation were applied: control and drought. Since 

each treatment has 3 replications, there were 1,080 experimental units in this experiment. Two 

greenhouse compartments were used for the experiment and each compartment contained 540 pots. 

Each pot was randomly placed on the conveyer in the greenhouse compartments as completely 

randomized design. The greenhouse experiment was carried out from 6th March to 24th April 2023. 

 

   

Figure 2.2 The experiment with completely randomized design (left) showed how the pots were placed 

each rectangular grid represent each pot; pea plant grown under control (blue) and drought (orange) 

condition; the practical pot arrangement (right). 

 

The environment in the greenhouse was controlled with an average temperature of 22oC during 

day and 18 oC at night, relative humidity was set at 60%. Natural light was used during the 

experiment with additional lighting supplied. No additional carbon dioxide was applied during the 

experiment. No nutrient solution was applied during the experiment. Each plant was grown in a 

pot of 17 cm diameter and 13 cm height filled with potting soil. During the experiment, plants 

were weighted every other day throughout the experiment to determine the amount of irrigation 

applied if needed. One to three sticks were put in the pot in order to support the pea plant structure 

and prevent them to grow out of the pot. Irrigation was applied when the amount of water was 
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lower than 70% of field capacity (FC) until the drought treatment started after three weeks of 

sowing. Plants were regularly irrigated to keep approximately 70% and 30% FC for control and 

drought conditions, respectively. Drought treatment was applied for three weeks then plants were 

imaged by sideview and topview camera systems. After that, plants were destructively harvested 

for the fresh weight and then were put in a force dry oven at 105oC oven for at least 48 hours. After 

that, dry weight of the plant biomass was measured.   

 

2.2 Phenotyping measurements and image processing 

Phenotypic data was automatically collected using the conveyor system at NPEC greenhouse, 

providing high-throughput phenotyping conditions. Plants were measured with the following 

imaging: (i) RGB sideview imaging; (ii) spectral imaging (SI); (iii) chlorophyll fluorescence (CF) 

imaging. The measurement was taken once before harvest. The sideview whole plant color 

imaging was captured using a RGB sideview scan camera (1” Progressive-scan-CCD sensor with 

bayer filter; 3384 (H) x 2704 (V) pixel with 3.69 µm pixel size). Plants entering the RGB sideview 

cabinet were stopped on the turn-table. The rotation of the table was set at 6 times or every 60o (0 

o, 60 o, 120 o, 180 o, 240 o, and 300 o). Hence, six images were captured for each plant. Each image 

was masked for plant part and analysed plant parameters, such as digital biomass, convex hull, 

height, and solidity (Figure 2.3). The analysis of RGB sideview imaging was provided by the 

NPEC team, color information was not extracted from these sideview images. 

Sideview digital biomass was calculated as the average of six sideview projected areas of plant 

parts, while height was measured using the pixel height of the plants. The convex hull, which is 

the smallest area that encloses the entire plant, provides information about the overall shape and 

size of plant structures. Solidity is the ratio of digital biomass to the convex hull area and represents 

the compactness of plant structures. The value of solidity ranges from 0 to 1, with higher values 

indicating a more compact or solid shape (Figure 2.4). 
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Figure 2.3 Example of an RGB sideview image with different 6 angles of the same pea (Genotype Sp157 

in control condition) for which digital biomass, height, convex hull, and solidity was calculated including 

the plant pixel area. 

 

   

Figure 2.4 Pea plant with overlaid representative measured sideview traits. 
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The topview SI and CF imaging were captured using CropReporter camera systems (PhenoVation 

B.V., Wageningen, The Netherlands). The CropReporterTM consists of cabinet with a camera 

system that houses controller computer, charge-coupled device (CCD) camera with optical filter 

wheel and focusing unit, integrated high-intensity red light-emitting diodes (LEDs) for excitation 

of the photosynthesis. All images are captured with the same lens (10 Mp 8 mm lens, 200 Lp mm-

1 resolution, 400 – 1000 nm spectral range) and CCD camera (1.3 Mp, 1296 x 996 pixels), with 

real 14-bit signal resolution. Plants were imaged at approximately 140 cm distance from the 

camera. The output is 16-bit RAW format, and automatic analysis of RGB, SI, and CF imaging 

was performed by DATM software (PhenoVation B.V., Wageningen, The Netherlands) (Lazarević 

et al., 2021). 

Before CF measurement, plants were dark-adapted for 30 minutes. For the excitation of 

photosynthesis, 4,000 µmolm-2s-1
 red LED light was used. The integration time for capturing the 

chlorophyll fluorescence image was 200 µs. The minimum chlorophyll fluorescence (F0) and 

maximum chlorophyll fluorescence (Fm) images were captured after 10 µs and 800 ms, 

respectively (Lazarević et al., 2021). Only dark-adapted measurement was taken in this 

experiment. Measured F0 and Fm was used for calculation of the maximum quantum yield for PSII 

(Fv/Fm) (Genty et al., 1989). Then plants were again illuminated for SI. Spectral images were 

captured at reflectance of colors: red (RRed-640 nm), green (RGreen-550 nm), and blue (RBlue-475 

nm), providing RGB topview imaging. These spectral reflectance in visible region indicates 

alterations in pigment content. Then hue (HUE), saturation (SAT), and value (VAL) were 

automatically calculated by Data Analyzer (DA) software (PhenoVation B.V., Wageningen, The 

Netherlands) (Lazarević et al., 2021).  

HSV color spaces (Hue, Saturation, and Value) is defined as a circular cylinder with the HUE as 

the angle around the cylinder (with red being 0°, green 120° and blue 240°), SAT as the distance 

from the center line of the cylinder and VAL as the height of the point of base of cylinder 

(FutureLearn, 2023; Figure 2.5). In plant phenotyping, the HUE component of the HSV color 

system can be used to detect and classify different color variations in plants. On the other hand, 

SAT refers to the intensity or purity of a color, providing insights into the intensity or saturation 

of pigments in plant tissues. Additionally, VAL represents the brightness of a color and can be 

utilized to assess the light reflectance properties of plant surfaces (Lazarević et al., 2022). 
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Figure 2.5 The HSV (Hue, Saturation, and Value) color model mapped to a cylinder (Source: 

https://commons.wikimedia.org/wiki/File:HSV_color_solid_cylinder.png). 

 

For data extraction from images captured by CropReporter, CF was set at minimum 1500 and 

minimum object size was 10 pixels in order to mask plant area, remove sticks, and remove noise 

from the images. 

All measured and calculated traits from both RGB sideview camera system and the CropReporter 

were categorized into three types; (i) RGB sideview traits; (ii) topview SI traits; (iii) CF traits 

(Table 2.1).   
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Table 2.1. List of traits derived from RGB sideview imaging and CropReporter camera systems categorized 

by types of imaging with abbreviations, wavelength for measurement or equation for calculation, and the 

reference if appropriate. 

Abbreviation Trait Unit Camera system 

RGB sideview traits 

   DB_Top Topview digital biomass cm2 CropReporter 

   DB_Side Sideview digital biomass cm2 RGB Sideview 

   CH Sideview convex hull area cm2 RGB Sideview 

   Height Height cm RGB Sideview 

   Solidity Sideview solidity - RGB Sideview 

Spectral imaging traits  

   HUE Hue degree CropReporter 

   VAL Value - CropReporter 

   SAT Saturation - CropReporter 

   RRed Reflectance in red color - CropReporter 

   RGreen Reflectance in green color - CropReporter 

   RBlue Reflectance in blue color - CropReporter 

Chlorophyll fluorescence traits 

   F0 Minimum fluorescence of dark-adapted leaves - CropReporter 

   Fm Maximum fluorescence of dark-adapted leaves - CropReporter 

   Fv/Fm Maximum quantum yield of PSII photochemistry - CropReporter 

 

2.3 Trait selection for model formulation 

To select traits for forming biomass estimation model, multicollinearity was considered to confirm 

that there was no one or more pairs of predictors is highly correlated. In regression analysis, 

multicollinearity led to unreliable inferences about the effects of the predictor variables on the 

response variables (Bhandari, 2023). To solve this multicollinearity problem, correlation among 

traits was considered. The very high positive or negative correlation, with correlation coefficient 

was greater than 0.7 or lower than -0.7, was considered as multicollinearity. If any pair of traits 

show a high positive or negative correlation, one of these traits will be excluded from the model 
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formulation based on their correlation with harvested biomass. The trait that had a higher 

correlation coefficient with harvested biomass was used for model formulation. The consideration 

was continued until there was no pair of traits showed high positive or negative correlation. 

Then the biomass estimation models were formulated by using multiple linear regression. 

Multicollinearity was checked again by using variance inflation factor (VIF). The lower VIF 

values showed less possibility of multicollinearity in the model. The acceptable VIF values was 

lower than 2.5 (Johnston et al., 2018). The formulated models that all traits had VIF values lower 

than 2.5 were acceptable and were used for biomass estimation. If at least one of the predictors in 

the model had higher 2.5 of VIF values, one of the predictors will be eliminated based on 

correlation of determination (R2) of the model until there was no predictors had higher 2.5 of VIF 

values.  

 

2.4 Biomass estimation models 

There were two main types of biomass estimation models formulated in this study, which were the 

biomass estimation model with single and multiple types of traits. The models were formulated by 

using multiple linear regression models, where harvested biomass was a response variable and 

selected image-based traits were predictors. For models with single type of traits, there were three 

biomass estimation deriving from three types of traits (Table 2.1) and are shown in the Equation 

2.1 to 2.3: 

 

Model 1: RGB sideview trait model 

 

𝑌1 =  𝛽1,0 + ∑ 𝛽1,𝑖𝑅𝐺𝐵𝑖
𝑛
𝑖=1 + 𝜀1    (Equation 2.1) 

 

Model 2: Spectral imaging trait model 

 

𝑌2 =  𝛽2,0 + ∑ 𝛽2,𝑖𝑆𝐼𝑖
𝑚
𝑖=1 + 𝜀2     (Equation 2.2) 
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Model 3: Chlorophyll fluorescence trait model 

 

𝑌3 =  𝛽3,0 + ∑ 𝛽3,𝑖𝐶𝐹𝑖
𝑝
𝑖=1 + 𝜀3    (Equation 2.3) 

 

Where   𝑌𝑖 is estimated biomass of model 𝑖, 𝛽  is coefficient,   

𝑅𝐺𝐵  is RGB sideview trait,   𝜀 is residuals,  

𝑆𝐼   is spectral imaging trait, 

𝐶𝐹   is chlorophyll fluorescence trait,   

𝑛, 𝑚, 𝑝 is number of 𝑅𝐺𝐵, 𝑐𝑜𝑙𝑜𝑟, and 𝐶𝐹 traits, respectively. 

 

Then the combination of different types of image-based traits were studied. The biomass 

estimation models with multiple traits were also formed by using multiple linear regression and 

using the same procedure for trait selection. There were four possible combinations of multiple 

traits which are shown in Equation 2.4 to 2.7. 

 

Model 4: RGB sideview + Spectral imaging trait model 

 

𝑌4 =  𝛽4,0 + ∑ 𝛽4,𝑖𝑅𝐺𝐵𝑖
𝑛
𝑖=1 + ∑ 𝛽4,𝑗𝑆𝐼𝑚

𝑗=1 + 𝜀  (Equation 2.4)  

 

Model 5: RGB sideview + Chlorophyll fluorescence trait model 

 

𝑌5 =  𝛽5,0 + ∑ 𝛽5,𝑖𝑅𝐺𝐵𝑖
𝑛
𝑖=1 + ∑ 𝛽5,𝑘𝐶𝐹𝑖

𝑝
𝑘=1 + 𝜀  (Equation 2.5)  
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Model 6: Spectral imaging + Chlorophyll fluorescence trait model 

 

𝑌6 =  𝛽6,0 + ∑ 𝛽6,𝑗𝑆𝐼𝑖
𝑚
𝑗=1 + ∑ 𝛽6,𝑘𝐶𝐹𝑖

𝑝
𝑘=1 + 𝜀  (Equation 2.6)  

 

Model 7: RGB sideview + Spectral imaging + Chlorophyll fluorescence trait model 

 

𝑌7 =  𝛽7,0 + ∑ 𝛽7,𝑖𝑅𝐺𝐵𝑖
𝑛
𝑖=1 + ∑ 𝛽7,𝑗𝑆𝐼𝑖

𝑚
𝑗=1 + ∑ 𝛽7,𝑘𝐶𝐹𝑖

𝑝
𝑘=1 + 𝜀 (Equation 2.7)  

 

Once the collections of selected predictors from each model was determined and biomass 

estimation was formed, the models were evaluated by using 10-fold cross validation. The data was 

randomly separated into 10 groups of approximately equal sample size. Nine groups were used as 

training data set, while the remaining group was a testing data set. The root mean squared error 

(RMSEi) was then computed on the observations in the held-out fold. This procedure was repeated 

10 times; each time, a different group of data set was treated as a testing data set. This process 

results in 10 estimates of the testing error. Then the 10-fold cross validation estimate was computed 

by averaging these values (Equation 2.8): 

 

𝑅𝑀𝑆𝐸 =
1

10
∑ 𝑅𝑀𝑆𝐸𝑖

10
𝑖=1    (Equation 2.8) 

 

RMSE was determined in both training data and testing data. In addition, correlation of 

determination (R2) was also used to evaluate model performance together with RMSE. The best 

performance biomass estimation model was considered by the lowest RMSE and highest R2. 
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2.5 Data and Statistical analysis 

A two-way ANOVA for completely randomized design followed by Fisher’s protected least 

significant difference (LSD) test was used to determine the statistical significance of differences 

in means of image-based traits, and harvested biomass among treatments with p-value < 0.05. The 

Pearson correlation coefficient and principal component analysis (PCA) was used to investigate 

relationship among traits and consider multicollinearity in the study with p-value < 0.05. Multiple 

linear regression analysis was used to form biomass model via the image-based traits as predictors 

and harvested biomass as a response variable. The variance inflation factor (VIF) was considered 

to confirm multicollinearity problem and excluding predictors until all predictors had VIF values 

lower than 2.5. After that, 10-fold cross validation was used to evaluate biomass estimation models 

by considering correlation of determination (R2), root mean square error (RMSE) of both training 

and testing data. All statistical analysis part was conducted by RStudio version 4.3.1 with 

‘agricolae’, ‘multicompView’, ‘factoextra’, ‘vip’, and ‘tidyverse’ (RStudio Team 2020).
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Chapter 3: Results 

 

To study the performance of the biomass estimation model by using a combination of image-based 

phenotypic traits, 180 pea genotypes grown in control and drought conditions were assessed to 

investigate differences in biomass traits and image-based traits (Figure 3.1). Then, biomass and 

image-based traits were used to build biomass estimation models with single or multiple types of 

traits. The results are represented in five sections: (3.1) the effect of drought on biomass, (3.2) the 

effect of drought on image-based phenotypic traits, (3.3) relationship among phenotypic traits, 

(3.4) biomass estimation model formulation with single type of image-based trait, and (3.5) 

biomass estimation model formulation with multiple types of image-based traits. 

 

   

   

Figure 3.1 Pea (genotype Sp154) was grown under control conditions (A, B, C) and drought conditions (D, 

E, F) at approximately six weeks after sowing. The images were captured using different camera systems: 

RGB sideview camera systems (A, D); topview spectral imaging via CropReporter (B, E); topview 

chlorophyll fluorescence (C, F). In the case of chlorophyll fluorescence, a shade of green to yellow color 

indicated a decrease in photosynthetic rate. 

 

A 

D E F 

C B 
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3.1 The effect of drought on biomass 

There was no significant interaction effect between genotype and treatment on both total fresh 

(FW) and dry weight (DW) harvested at the end of the experiment (p < 0.001, Figure 3.2, and 

Table 3A.1.1). FW and DW showed significant differences between the control and drought 

conditions (p < 0.001, Figure 3.2, and Table 3A.1.1). Pea plants grown under control conditions 

had higher FW and DW, approximately 22 g and 4 g, respectively, while those grown under 

drought conditions had approximately 12 g and 2 g of FW and DW (Figure 3.2). Additionally, a 

significant effect of genotype was also observed in this study (p < 0.001, Table 3A.1.1). Variation 

was observed in FW and DW with approximate values in each genotype ranging between 5 and 

50 g, and 0.5 and 9 g, respectively (Figure 3.3). 

 

Total fresh weight Total dry weight 

  

Figure 3.2  Box plots of total fresh weight (left) and total dry weight (right) of pea grown under control 

(blue) and drought (red) conditions. The letters above the box plots indicate significant differences when 

comparing between treatment (p < 0.05) using Fisher’s protected LSD test. 
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Figure 3.3  Dot plots showing variations of total fresh weight (left) and total dry weight (right) of all 

genotypes of pea grown under control (green) and drought (orange) conditions, ordering from highest 

weight to lowest weight in control condition.  
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3.2 The effect of drought on image-based phenotypic traits 

Image-based phenotypic traits were categorized into three main types based on the types of sensors 

used in the measurements: (3.2.1) RGB sideview traits; (3.2.2) Spectral imaging (SI) traits (3.2.3) 

Chlorophyll fluorescence (CF) traits. 

 

3.2.1 RGB sideview traits 

There were five RGB sideview traits: topview digital biomass (DB_Top), average sideview digital 

biomass (DB_Side), convex hull (CH), height, solidity. An interaction effect was observed 

between pea genotypes and treatments on all traits (p < 0.05, Figure 3.4, and Table 3A.1.2). The 

significant effect of treatment was also found in all traits (p < 0.001, Figure 3.4, and Table 3A.1.2). 

Pea plants grown under control conditions exhibits a larger DB_Top and DB_Side compared to 

those grown under drought conditions (Figure 3.4). DB_Top was approximately average of 120 

and 80 cm2 in control and drought conditions, respectively, while DB_Side was of approximately 

300 and 200 cm2, in control and drought conditions respectively (Figure 3.4). Plant height and CH 

were also significantly higher in control than drought conditions (p < 0.001, Figure 3.4, and Table 

3A.1.2). Only solidity was significantly lower in controlled plants than drought-stressed plants (p 

< 0.001, Figure 3.4, and Table 3A.1.2).  

Additionally, the sideview digital biomass, convex hull, height, and solidity at six different angles, 

as well as the median, minimum, and maximum of these traits, showed significant effects of 

genotypes, treatments, and their interaction (p < 0.001, Appendix 3A.2). The trend of each side, 

median, minimum, and maximum was similar to average, with significantly higher in plants grown 

under control conditions than drought conditions (p < 0.001, Appendix 3A.2). 
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Topview digital biomass (A) Sideview digital biomass (B) Sideview convex hull (C) 

   

Height (D) Sideview solidity (E)  

  

 

Figure 3.4  Box plots of topview digital biomass (A), average sideview digital biomass (B), average 

sideview convex hull (C), average plant height (D), average sideview solidity (E) of pea grown under 

control (blue) and drought (red) conditions. The letters above the box plots indicate significant differences 

when comparing between treatment (p < 0.05) using Fisher’s protected LSD test. 
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3.2.2 Spectral imaging traits 

In this study, six spectral imaging (SI) traits were collected, including spectral reflectance in red 

(RRed), spectral reflectance in green (RGreen), spectral reflectance in blue (RBlue), hue (HUE), 

saturation (SAT), value (VAL), The results revealed significant effects of genotypes, treatments, 

and their interaction on all SI traits (p < 0.05, Figure 3.5, and Table 3A.1.3).  

Pea plants grown under control conditions exhibited higher RRed, RGreen, and RBlue compared to 

those grown under drought conditions (Figure 3.5). Specifically, under control conditions, the 

average RRed, RGreen, and RBlue were 2,300, 3,500, and 1,600, respectively, while approximately 

2,100, 3,200, and 1,500 were observed in pea plants grown under drought conditions (Figure 3.5). 

A similar trend was observed on SAT and VAL, with higher values in pea plants grown under 

control conditions compared to those grown under drought conditions. The SAT in pea plants 

grown under control conditions was approximately 0.55, whereas it was around 0.50 in plants 

grown under drought conditions (Figure 3.5). Similarly, under control conditions, pea plants had 

slightly higher values for the parameter of VAL compared to drought conditions, with a difference 

of approximately 0.05 (Figure 3.5). In contrast, HUE was the only trait that had higher values in 

pea plants grown under drought conditions compared to those grown under control conditions, 

with approximate values of 105 and 100, respectively (Figure 3.5). 
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RRed (A) RGreen (B) RBlue (C) 

   

HUE (D) SAT (E) VAL (F) 

   

Figure 3.5 Box plots of spectral imaging traits of pea grown under control (blue) and drought (red) 

conditions: reflectance of red color (RRed: A), reflectance of green color (RGreen: B), reflectance of blue color 

(RBlue: C), hue (HUE: D), saturation (SAT: E), and value (VAL: F). The letters above the box plots indicate 

significant differences when comparing between treatment (p < 0.05) using Fisher’s protected LSD test. 

 

3.2.3 Chlorophyll fluorescence traits 

There were three parameters for chlorophyll fluorescence (CF) traits: minimum and maximum 

fluorescence of dark-adapted leaves (F0 and Fm), and maximum quantum yield of photosystem II 

(PSII) photochemistry (Fv/Fm). There was no significant interaction effect between genotypes and 

treatments observed in any of the chlorophyll fluorescence traits (p > 0.05, Figure 3.6, and Table 

3A.1.4). However, significant effects of genotype and treatment were found in F0 and Fv/Fm (p < 

0.05, Figure 3.6, and Table 3A.1.4). Regarding F0, pea plants grown under control conditions had 

higher values compared to those grown under drought conditions, with approximately 1,400 and 

1,300, respectively (Figure 3.6). On the other hand, Fv/Fm in pea plants grown under drought 
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conditions showed significantly higher values than those grown under control conditions, with 

approximately 0.77 and 0.76, respectively (Figure 3.6). Furthermore, only a significant effect of 

genotype was observed in Fm (p < 0.001, Figure 3.6, and Table 3A.1.4), while there was no 

significant effect of treatment on Fm (p = 0.066, Figure 3.6, and Table 3A.1.4), and the average 

value of Fm was approximately 6,400 in both treatment conditions. 

 

F0 Fm Fv/Fm 

   

Figure 3.6  Box plots of chlorophyll fluorescence traits of pea grown under control (blue) and drought (red) 

conditions: minimum fluorescence of dark-adapted leaves (F0, left), maximum fluorescence of dark-adapted 

leaves (Fm, middle), and maximum quantum yield of photosystem II (PSII) photochemistry (Fv/Fm, right).  

The letters above the box plots indicate significant differences when comparing between treatment (p < 

0.05) using Fisher’s protected LSD test. 

 

3.3 Relationship among phenotypic traits  

The criteria for evaluating correlation coefficient and its interpretation can be found in Appendix 

3A.3. A high positive correlation was observed between RGB sideview traits and harvested 

biomass in both fresh (FW) and dry weight (DW), specifically topview digital biomass (DB_Top) 

and sideview digital biomass (DB_Side), with indicating a high positive correlation with harvested 

biomass (r > 0.7, Figure 3.7). Convex hull (CH) and height also showed moderate positive 

correlation with FW and DW, while solidity had a very low negative correlation (Figure 3.7). Low 

positive correlations were found between chlorophyll fluorescence (CF) traits and harvested 
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biomass, with the highest correlation coefficient belonging to the maximum fluorescence of dark-

adapted leaves (Fm) at approximately 0.38 and 0.44 for FW and DW, respectively (Figure 3.7). On 

the other hand, most spectral imaging (SI) traits showed no significant correlation with biomass, 

except for saturation (SAT) and reflectance in green color (RGreen), which exhibited a very low 

correlation (Figure 3.7). 

Correlations were also observed among different types of image-based phenotypic traits. Only 

DB_Top showed a high positive correlation with the minimum fluorescence of dark-adapted 

leaves (F0) and Fm, while DB_Top showed a very low positive with the maximum quantum yield 

of photosystem II (PSII) photochemistry (Fv/Fm). The other traits in RGB sideview traits showed 

very low positive correlation with F0 and Fm, and very low negative correlation with Fv/Fm, except 

for solidity that showed the opposite direction of correlation (Figure 3.7). RGB sideview traits, 

except for solidity, showed low positive correlation with almost SI traits except for HUE, while 

solidity and HUE had a low positive correlation (Figure 3.7). Only SAT showed moderate positive 

correlations with both F0 and Fm, while exhibiting a low negative correlation with Fv/Fm (Figure 

3.7). Furthermore, there was a moderate negative correlation between Fv/Fm and most SI traits, 

except for HUE, which had a moderate positive correlation (Figure 3.7). 

Within the same types of image-based phenotypic traits, there was moderate and high positive 

correlations among RGB sideview traits, except for solidity which had a negative correlation to 

the others (Figure 3.7). A very high positive correlation was found among RRed, RGreen, RBlue, and 

value (VAL), while HUE had a high negative correlation with other traits in SI traits (Figure 3.7). 

Finally, a high positive correlation was found between F0 and Fm, while low negative and positive 

correlations were observed between Fv/Fm and F0, and Fm, respectively (Figure 3.7). 
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Figure 3.7 Correlation matrix for among all image-based traits, total fresh and dry weight of pea grown 

under control and drought conditions. Positive and negative correlations are illustrated in blue and red 

colors, respectively. Color shade is proportional to the correlation coefficients, with their value shown in 

the color intensity bar. Cross mark (X) shows that there was no significant correlations between two 

parameters; topview digital biomass (DB_Top), sideview digital biomass (DB_Side), sideview convex hull 

(CH), height, solidity, reflectance of red color (RRed), reflectance of green color (RGreen), reflectance of blue 

color (RBlue), hue (HUE), saturation (SAT), value (VAL), minimum fluorescence of dark-adapted leaves 

(F0), maximum fluorescence of dark-adapted leaves (Fm), maximum quantum yield of photosystem II (PSII) 

photochemistry (Fv/Fm), total fresh weight (FW), and total dry weight (DW). 
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A principal component analysis (PCA) was conducted on all image-based phenotypic traits, 

resulting in two principal components (PCs) being considered. These two PCs accounted for nearly 

90.8% of the cumulative variance in all the traits (Figure 3.8, Appendix 3A.4). Overall, traits 

categorized in the first PC (Dim1) were mostly SI traits and Fv/Fm, while RGB sideview traits were 

mostly categorized in the second PC (Dim2). The Dim1 explained 74.1% of the variance and 

consisted of height, solidity, RRed, RGreen, RBlue, HUE, VAL, and Fv/Fm. Notably, solidity, HUE, 

and Fv/Fm showed similar trends, while the other traits in Dim1 exhibited opposite directions 

(Figure 3.8, Appendix 3A.4). The Dim2 accounted for 16.7% of the variance and included 

DB_Top, DB_Side, CH, SAT, F0, and Fm. Almost the traits in Dim2 displayed a similar direction 

except for Fm (Figure 3.8, Appendix 3A.4). 

 

 

Figure 3.8 Trait loading scores of all traits for principal component analysis; topview digital biomass 

(DB_Top), sideview digital biomass (DB_Side), convex hull (CH), height, solidity, reflectance of red color 

(RRed), reflectance of green color (RGreen), reflectance of blue color (RBlue), hue (HUE), saturation (SAT), 

value (VAL), minimum fluorescence of dark-adapted leaves (F0), maximum fluorescence of dark-adapted 

leaves (Fm), and maximum quantum yield of photosystem II (PSII) photochemistry (Fv/Fm). 
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3.4 Biomass estimation models formulation with single type of image-based traits 

There were three biomass estimation models based on different types of image-based phenotypic 

traits: (i) a model based on RGB sideview traits, (ii) a model based on spectral imaging (SI) traits, 

and (iii) a model based on chlorophyll fluorescence (CF) traits. To select parameters for model 

formulation, multicollinearity was assessed by considering correlation coefficients and the 

variance inflation factor (VIF). Correlation coefficients higher than 0.7 (Songara, 2022) and VIF 

values exceeding 2.5 indicated the presence of considerable multicollinearity (Johnston et al., 

2018). The set of parameters used for model formulation was chosen to include the maximum 

number of traits while avoiding any multicollinearity problems and providing the highest 

correlation of determination (R2). The detail for parameter selection was shown in the appendix 

(Appendix 3A.5) 

Regarding RGB sideview traits, the model that yielded the best performance without encountering 

any multicollinearity issues was the one that incorporated both topview (DB_Top) and sideview 

digital biomass (DB_Side) (Table 3A.5.1). The biomass estimation model utilizing RGB sideview 

traits can be represented by equation 3.1. For the model based on SI traits, a multicollinearity 

problem arose when all parameters were included in the model formulation. However, the optimal 

model in this scenario was constructed using two traits, namely hue (HUE) and saturation (SAT), 

and it can be expressed through equation 3.2. Lastly, the model utilizing CF traits that exhibited 

no multicollinearity problems and achieved the highest R2, was developed using the maximum 

fluorescence of dark-adapted leaves (Fm) and the maximum quantum yield of photosystem II (PSII) 

photochemistry (Fv/Fm). The equation representing this model is equation 3.3. 

 

Biomass estimation model with RGB sideview traits: 

 

𝑦 = 𝑎1,0 + 𝑎1,1𝐷𝐵_𝑇𝑜𝑝 + 𝑎1,2𝐷𝐵_𝑆𝑖𝑑𝑒    (Equation 3.1) 
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Biomass estimation model with spectral imaging traits: 

 

𝑦 = 𝑎2,0 + 𝑎2,1𝐻𝑈𝐸 + 𝑎2,2𝑆𝐴𝑇     (Equation 3.2) 

 

Biomass estimation model with chlorophyll fluorescence traits: 

 

𝑦 = 𝑎3,0 + 𝑎3,1𝐹𝑚 + 𝑎3,2𝐹𝑣/𝐹𝑚     (Equation 3.3) 

 

Where  𝑦  is biomass traits (total fresh or dry weight) in gram (g.), 

  𝐷𝐵_𝑇𝑜𝑝 is topview digital biomass (cm2) 

  𝐷𝐵_𝑆𝑖𝑑𝑒 is average of sideview digital biomass (cm2) 

𝐻𝑈𝐸  is hue, 

  𝑆𝐴𝑇  is saturation, 

𝐹𝑚  is maximum fluorescence of dark-adapted leaves, 

𝐹𝑣/𝐹𝑚 is maximum quantum yield of photosystem II (PSII) 

photochemistry, 

  𝑎𝑖,𝑗  is coefficient. 

 

After parameter selection for each model, fresh weight (FW) and dry weight (DW) were 

considered and used to form biomass estimation models. The 10-fold cross-validation was used to 

investigate the model performance. The average correlation of determination (R2) and root mean 

square error (RMSE) of the training and testing datasets of the training and testing datasets were 

evaluated (Table 3.1). 
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Table 3.1 Correlation of determination (R2) and root mean square error (RMSE) of training and testing 

dataset of fresh and dry weight biomass estimation model with a single type of trait. 

Types of image-based phenotypic traits R2 
RMSE (g.) 

Training error Testing error 

RGB sideview traits 

    Fresh weight 0.70 4.78 4.76 

    Dry weight 0.76 0.73 0.72 

Spectral imaging traits 

    Fresh weight 0.09 8.28 8.31 

    Dry weight 0.10 1.42 1.42 

Chlorophyll fluorescence traits 

    Fresh weight 0.15 8.01 8.04 

    Dry weight 0.19 1.34 1.35 

 

The results showed that all the biomass estimation models were better in DW estimation than in 

FW estimation (Table 3.1). Among the three biomass estimation models, the model built from 

RGB sideview traits had a much better performance than the other models in both FW and DW 

estimation. The RGB sideview trait model provided the highest R2 and the lowest RMSE in both 

training and testing errors (Table 3.1). The model built from CF traits showed the second-best 

performance in formulating biomass estimation models, with R2 values of approximately 0.15 and 

0.20 for FW and DW, respectively (Table 3.1). The model derived from SI traits had the lowest 

R2. However, there was a slight difference in RMSE between the model from SI and CF traits 

model (Table 3.1). The results also showed that the model based on RGB sideview traits had a 

stronger capability than those based on SI and CF traits in estimating biomass, as evidenced by the 

correlation between observed and estimated biomass (Figure 3.9). 
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 Figure 3.9 The scatterplot of observed fresh weight (left) and dry weight (right) in gram (g.) versus 

estimated biomass in gram (g.) using RGB sideview traits (top), spectral imaging (SI) traits (middle), and 

chlorophyll fluorescence (CF) traits (bottom). Blue line shows a linear regression line; Grey-shaded area 

shows confidence interval at 95%; Red-dashed lines show the lower and upper of prediction interval. Black-

dashed line show the 1:1 line. 
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3.5 Biomass estimation model formulation with multiple types of image-based traits 

Biomass estimation models were formulated using multiple types of image-based phenotypic traits 

in four scenarios: (i) a combination of RGB sideview and spectral imaging (SI) traits, (ii) a 

combination of RGB sideview and chlorophyll fluorescence (CF) traits, (iii) a combination of SI 

and CF traits, and (iv) a combination of all traits. The initial models were formulated by combining 

parameters from the models with single types of traits. Similar to the models with single types of 

traits, the parameters used in each model were selected by considering the correlation among traits 

and variance inflation factor (VIF) values. One parameter was excluded from the model until there 

were no multicollinearity issues (Appendix 3A.6). 

The model derived from the combination of RGB sideview, and SI traits initially included four 

variables: topview digital biomass (DB_Top), average sideview digital biomass (DB_Side), HUE, 

and saturation (SAT), as there were no multicollinearity issues. These four parameters were then 

included in the model formulation, and the model can be expressed by equation 3.4. For the model 

combining RGB sideview and CF traits, three parameters were used due to multicollinearity. The 

maximum fluorescence of dark-adapted leaves (Fm) was excluded from this scenario, and the 

model can be expressed by equation 3.5. Similarly, the model combining SI and CF traits showed 

multicollinearity with four variables. Excluding HUE from the model provided a higher R2 

compared to excluding SAT and resolved the multicollinearity problem. Therefore, the biomass 

estimation model in this case utilized SAT, Fm, and the maximum quantum yield of photosystem 

II (PSII) photochemistry (Fv/Fm), and can be represented by equation 3.6. Lastly, when combining 

all traits, the model initially included all six parameters, but multicollinearity was found. To 

address this, the number of parameters was reduced until the model consisted of four: DB_Top, 

DB_Side, HUE, and Fv/Fm, represented by equation 3.7. 

 

Biomass estimation model with RGB sideview + spectral imaging traits: 

 

𝑦 = 𝑎4,0 + 𝑎4,1𝐷𝐵_𝑇𝑜𝑝 + 𝑎4,2𝐷𝐵_𝑆𝑖𝑑𝑒 + 𝑎4,3𝐻𝑈𝐸 + 𝑎4,4𝑆𝐴𝑇  (Equation 3.4) 
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Biomass estimation model with RGB sideview + chlorophyll fluorescence traits: 

 

𝑦 = 𝑎5,0 + 𝑎5,1𝐷𝐵_𝑇𝑜𝑝 + 𝑎5,2𝐷𝐵_𝑆𝑖𝑑𝑒 + 𝑎5,3𝐹𝑣/𝐹𝑚   (Equation 3.5) 

 

Biomass estimation model with spectral imaging + chlorophyll fluorescence traits: 

 

𝑦 = 𝑎6,0 + 𝑎6,1𝑆𝐴𝑇 + 𝑎6,2𝐹𝑚 + 𝑎6,3𝐹𝑣/𝐹𝑚     (Equation 3.6) 

 

Biomass estimation model with all traits: 

 

𝑦 = 𝑎7,0 + 𝑎7,1𝐷𝐵_𝑇𝑜𝑝 + 𝑎7,2𝐷𝐵_𝑆𝑖𝑑𝑒 + 𝑎7,3𝐻𝑈𝐸 + 𝑎7,4𝐹𝑣/𝐹𝑚  (Equation 3.7) 

 

Where  𝑦  is biomass traits (total fresh or dry weight) in gram (g.), 

  𝐷𝐵_𝑇𝑜𝑝 is topview plant pixel from CropReporter, 

  𝐷𝐵_𝑆𝑖𝑑𝑒 is sideview plant pixel, 

𝐻𝑈𝐸  is hue, 

  𝑆𝐴𝑇  is saturation, 

𝐹𝑚  is maximum fluorescence of dark-adapted leaves, 

𝐹𝑣/𝐹𝑚 is maximum quantum yield of photosystem II (PSII) 

photochemistry, 

  𝑎𝑖,𝑗  is coefficient. 
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Four biomass estimation models were formulated and evaluated based on their performance, 

assessed through the correlation of determination (R2), and root mean square error (RMSE). 

Consistent with the model utilizing a single type of image-based phenotypic traits, all the models 

demonstrated better performance in estimating dry weight (DW) compared to fresh weight (FW), 

as indicated by higher R2 values and lower RMSE values (Table 3.2). 

 

Table 3.2 Correlation of determination (R2) and root mean square error (RMSE) of training and testing 

dataset of fresh and dry weight biomass estimation model with multiple types of traits. 

Types of image-based phenotypic traits R2 
RMSE (g.) 

Training error Testing error 

RGB sideview + spectral imaging traits 

    Fresh weight 0.76 4.31 4.30 

    Dry weight 0.79 0.68 0.68 

RGB sideview + chlorophyll fluorescence traits 

    Fresh weight 0.72 4.61 4.61 

    Dry weight 0.77 0.71 0.71 

Spectral imaging + chlorophyll fluorescence traits 

    Fresh weight 0.16 7.98 8.03 

    Dry weight 0.20 1.34 1.35 

All traits 

    Fresh weight 0.76 4.31 4.31 

    Dry weight 0.79 0.68 0.68 

 

The results indicated that the model combining RGB sideview and SI traits outperformed the other 

models. It achieved the highest R2 and the lowest RMSE compared to the others (Table 3.2). The 

biomass model incorporating all traits performed well, ranking second and closely matching the 

performance of the combination of RGB sideview and SI traits. They exhibited almost similar 

values of R2 and RMSE for the training error. However, the model with all traits showed slightly 

higher values of RMSE for the testing error (Table 3.2). The model incorporating RGB sideview 

and CF traits also demonstrated a high R2 and low RMSE (Table 3.2). In contrast, the model 

combining SI and CF traits exhibited the lowest R2 and the highest RMSE. The differences in these 
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values were substantial compared to the other three models (Table 3.2). The results also showed 

that the models that had parameters from RGB sideview traits had a stronger capability than those 

based on the combination of SI and CF traits in estimating biomass in both FW and DW, as 

evidenced by the correlation between observed and estimated biomass (Figure 3.10 and Figure 

3.11). 

 

   

  

Figure 3.10 The scatterplot of observed fresh weight (FW) in gram (g.) versus estimated FW in gram (g.) 

using multiple image-based traits; RGB sideview spectral imaging (SI) traits (top-left), RGB sideview and 

CF traits (top-right), SI and CF traits (bottom-left), and all traits (bottom-right). Blue line shows a linear 

regression line; Grey-shaded area shows confidence interval at 95%; Red-dashed lines show the lower and 

upper of prediction interval; Black-dashed line show the 1:1 line. 
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Figure 3.11 The scatterplot of observed dry weight (DW) in gram (g.) versus estimated DW in gram (g.) 

using multiple image-based traits; RGB sideview traits, and spectral imaging (SI) traits (top-left), RGB 

sideview traits and chlorophyll fluorescence (CF) traits (top-right), SI and CF traits (bottom-left), and all 

traits (bottom-right). Blue line shows a linear regression line; Grey-shaded area shows confidence interval 

at 95%; Red-dashed lines show the lower and upper of prediction interval; Black-dashed line show the 1:1 

line. 
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Chapter 4: Discussion 

 

This study describes the use of image-based phenotyping to investigate pea's responses under 

drought conditions and improve biomass estimation using the combination of different types of 

non-invasive image-based phenotypic traits. The study focused on three types of image-based 

phenotypic traits: (i) RGB sideview traits; (ii) spectral imaging (SI) traits; (iii) chlorophyll 

fluorescence (CF) traits. The first type of trait represented the morphology and architecture of pea 

plants, while alteration of pigments and photosynthetic activity were related to the second and third 

trait type, respectively. Our hypothesis was that the biomass estimation could be enhanced by 

incorporating RGB sideview traits with either SI or CF traits or both in the biomass estimation 

model. This is because the combination of different types of traits covers both the morphological 

and physiological mechanisms of plants, which ultimately affect plant biomass. Partially 

supporting our hypothesis, the biomass estimation model with multiple types of image-based 

phenotypic traits showed a slight improvement in accuracy. Among the tested models, the 

combination of RGB sideview traits and SI traits exhibited the highest accuracy in the biomass 

estimation model. It was expected that all-traits model would achieve the highest accuracy, while 

the all-traits model was ranked the second-best model. The combination of RGB sideview traits 

with CF traits resulted in lower accuracy compared to the previously mentioned models, but it still 

outperformed the model derived from RGB sideview traits alone, as expected. Additionally, the 

models generated without RGB sideview traits displayed substantially lower accuracy in biomass 

estimation, highlighting the crucial role of RGB sideview in achieving the highest accuracy. These 

findings are further discussed in terms of the ability of different types of image-based traits to 

investigate plant responses to drought and the performance of the developed biomass estimation.  

 

4.1 More pronounced changes in morphological traits than in other traits in drought 

Analysis of the RGB sideview imaging obtained from RGB sideview imaging and the camera 

system CropReporter, such as topview digital biomass (DB_Top), average sideview digital 

biomass (DB_Side), convex hull area (CH), plant height, revealed that drought led to a significant 

decrease in all these measured morphological traits, while the trait solidity increased in drought 

condition. The study by Kim et al. (2020) showed that rice grown under drought stress had more 



38 

 

compact structure, resulting in lower CH and higher solidity. This is because drought limited plant 

growth and expansion, resulting in plants growing densely in available space. The same pattern of 

results was also found in our study since pea plants grown in drought had more compact structure 

than in control conditions (Figure 3.4). This result was supported by the fact that pea plants 

subjected to drought conditions showed significantly lower total fresh weight (FW) and dry weight 

(DW) compared to those grown under control conditions (p < 0.001, Table 3A.1, and Figure 3.2).   

Furthermore, a high positive correlation, with correlation coefficients exceeding 0.7, was observed 

between morphological traits derived from RGB sideview traits and total harvested biomass. 

Notably, DB_Side exhibited a higher correlation coefficient than DB_Top for both FW and DW 

(Figure 3.7). According to the results, sideview images are more effective at determining biomass 

of pea plants than topview images, since pea plants grown in the pot vertically climbed the stick 

by using tendrils and less spread in horizontal direction. The advantages of sideview over topview 

images for plant phenotyping was described by Hati et al. (2023) that sideview images can capture 

vertical shoot growth, while top-view images do not always capture all the features due to 

overlapping leaves. Hence the performance of sideview and top view images may be different 

when apply to other plant species since they have different architecture, morphology, and structure.  

The strong correlations between RGB sideview traits and harvested biomass have also been 

reported in numerous studies utilizing different plant species, stressors, and automated imaging 

phenotyping systems. For instance, studies involving safflower under drought (Joshi et al., 2021), 

wheat under nitrogen deficiency (Banerjee et al., 2020), rice under salinity (Campbell et al., 2015), 

and pea seedlings in control environments (Nguyen et al., 2018) showed remarkably high 

correlations between estimated shoot biomass derived from imaging platforms and harvested 

biomass, with correlation coefficients ranging from approximately 0.85 to 0.95, using the 

Scanalyzer 3D digital imaging platform. These high correlations between image-based pixel and 

harvested traits in different plant species, stressors, and high throughput facilities illustrated the 

consistency and ability of RGB sideview traits for interpreting harvested biomass.  

In other traits, the analysis of spectral imaging (SI) traits and chlorophyll fluorescence (CF) traits 

showed unexpected results. SI traits revealed a decrease in the reflectance of red (RRed), green 

(RGreen), and blue (RBlue), as well as saturation (SAT) and value (VAL), under drought conditions 

and, hue (HUE) was the only trait that increased in response to drought (Figure 3.5). Surprisingly, 
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these results partially contradict a previous experiment conducted by Lazarević et al. (2022) on M. 

sinensis, which also investigated the effect of drought stress on plant growth using the same camera 

system, CropReporter. In the study of M. sinensis, RRed and RBlue increased under drought 

conditions, indicating a decrease in photosynthetic pigments and an increase in yellow and brown 

pigments, which are typical characteristics of senescing leaves resulting from a variety of stresses 

(Li et al., 2014). Another contradiction was observed in HUE, which was significantly higher in 

the drought condition compared to the control condition in this study (Figure 3.5). Typically, leaf 

color has a HUE range from 60° to 120°, representing the gradient from yellow to green (Rezzouk 

et al., 2020; Genangeli et al., 2023). Therefore, plants exposed to drought stress should exhibit a 

lower HUE than those in the control condition. Kim et al. (2020) established criteria for 

distinguishing plants grown under control and drought conditions by using HUE which proved to 

be effective in differentiating between the rice grown under control and drought conditions (Kim 

et al., 2020). 

Furthermore, surprising results were also found with regard to the CF traits. Fv/Fm in pea plants 

grown in drought conditions was significantly higher than in those grown under control conditions 

(Figure 3.6). Although Fv/Fm is widely used as a physiological parameter for estimating plant 

performance under stressful conditions, several authors have reported that it is not sensitive to mild 

or moderate water stress (Bukhov and Carpentier, 2004; Massacci et al., 2008). The reaction 

centers of PSII are not affected by drought until the stress becomes severe, due to the presence of 

various photoprotective mechanisms (Sommer et al., 2023). Lazarević et al. (2022) found that 

Fv/Fm in M. sinensis only decreased after prolonged and severe water deficiency stress, which was 

as long as two or three weeks of withholding irrigations. Similar results were observed in 

Arabidopsis plants grown under drought conditions, where a significant difference in Fv/Fm was 

observed after seven days of drought stress (Yao et al., 2018). In other pea experiment, a significant 

decrease of Fv/Fm, was found after four and five days without irrigation (Couchoud et al., 2020). 

Another type of water regime in drought treatment was to maintain low amount of water in drought 

condition. For example, in hybrid poplar experiment, water was maintained at 100% and lower 

than 50% of field capacity (FC) for control and drought treatment, respectively, and the experiment 

was applied for several weeks to show the significant different in Fv/Fm between control and 

drought conditions (Guo et al., 2010). An experiment in pigeon pea maintained 100% and 50% FC 

during the whole experiment but withheld irrigation one week before measurement (Narina et al., 
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2014). Compared to our study, water was still applied during the drought treatment in the whole 

experiment, maintaining 30% FC for drought and 70% FC for the control condition which may 

not have been severe enough to cause damage to photosystem II (PSII) and affect Fv/Fm under 

drought conditions as expected. 

Additionally, the irrigation method could be another factor contributing to the unexpected results 

with regard to Fv/Fm. There were two compartments in this experiment and pot weight from each 

compartment was determined approximately every other day to irrigate and maintain 70% FC and 

30% FC for the control and drought treatment, respectively. The pot weight and cumulative weight 

of water added showed that water was applied in drought was more consistent than in control since 

there was a sharply fluctuating pattern of pot weight in control condition (Figure 4A.1.1). The 

pattern showed that the pot weight of plants grown in control conditions reduced faster than the 

those grown in drought conditions (Figure 4A.1.1), meaning that plants grown under control 

conditions used more water for transpiration consistent with the sharply increasing in the amount 

of cumulative water added in plants grown under conditions. Hence, the frequency of irrigation 

may not have been sufficient for maintaining water at a constantly higher level in the control 

treatment, and the transpiration of plants grown under control conditions could have been limited 

by the soil water availability at times, leading to a decrease in transpiration rate and subsequently 

a decrease in photosynthetic rate. The decrease in photosynthesis rate could have affected the 

decrease in reflectance of SI and CF traits observed in this study (Figure 3.5 and Figure 3.6). In 

addition, the pot weight of the control conditions almost reached the weight of 30% FC as in 

drought treatment. This pattern of pot weight was observed about a week before the image 

acquisition. This suggests that the severity of drought in this experiment varied among plants. 

Therefore, the frequency and amount of irrigation could have affected transpiration and other 

physiological mechanisms of plants grown under control treatment, resulting in the unexpectedly 

lower Fv/Fm for control plants found in this experiment. 

Generally, the changes in SI traits indicate alterations in pigment content and plant senescence 

(Lazarević et al., 2022). In this study, another potential explanation for unexpected results in SI 

and CF traits is the senescence of pea plants grown under control conditions due to reaching the 

reproductive phase. From the pot weight and cumulative water added data, pea plants grown under 

control conditions received more water than those in the drought treatment (Figure 4A.1.1). Hence, 
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they reached their reproductive stage faster than those grown under drought conditions. This is 

further supported by the observation that some pea plants in control conditions were already 

flowering and producing pea seeds before imaging (Figure 4A.2.1). Plant senescence and stress 

can be visible as a loss of photo pigments, such as anthocyanins, xanthophylls, carotenoids, and 

chlorophyll, which characterize leaf color (Gregersen et al., 2014; Winker-Shirley, 2015). 

Experiments monitoring pea growth have found that the average of three vegetation indices, such 

as green-red vegetation index (GRVI), normalized difference vegetation index (NDVI), and 

normalized difference red-edge index (NDRE), decreased as plants approached physiological 

maturity and senescence (Vargas et al., 2019). Similar results were observed in an experiment 

monitoring rice growth using vegetation indices (VIs) (Ang et al., 2020). Moreover, a very high 

positive relationship between VIs and SPAD was found in this experiment, indicating a decrease 

in VIs related to chlorophyll content in the leaves (Ang et al., 2020). Consistent with our results, 

the reflectance of colors decreased, and the lower HUE, representing a less green gradient color, 

in pea plants grown under control conditions could be the consequence of changes in chlorophyll 

pigments due to senescence after reaching the reproductive stage.  

To summarize, the results from this experiment showed more pronounced changes in RGB 

sideview traits related to morphological traits, such as DB_Top and DB_Side, while SI and CF 

traits showed unexpected results contrary to expectations. Reduction in plant biomass is a typical 

response to drought (Farooq et al., 2009), as it reduces metabolite requirements (Chaves et al., 

2003) and plays a crucial role in the regulation of heat dissipation and transpiration (Blum, 2005). 

Several possible reasons for these unexpected results in spectral traits and Fv/Fm include the 

limitation of water regimes during the experiment, the frequency of irrigations, and the stage of 

plant growth and development during image acquisition. Further investigations and adjustments 

in experimental design and conditions may provide insights into the underlying factors 

contributing to these unexpected observations. 

 

4.2 RGB sideview traits providing the highest accuracy for biomass estimation model 

An image-based phenotypic trait has been applied to estimate biomass in agriculture and ecology. 

This approach enables the non-destructive assessment of plant response to the environment over 

time and allows the determination of plant biomass without the need to harvest the entire plant 
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(Rahaman et al., 2017). Several biomass estimation models based on image-based phenotypic traits 

have been derived using linear methods (Golzarian et al., 2011). In this study, biomass estimation 

models were developed using multiple linear regression methods. Each model was derived from 

different three types of image-based phenotypic traits, including RGB sideview, spectral imaging 

(SI), and chlorophyll fluorescence (CF) traits. The results showed that using RGB sideview traits 

as predictor variables yielded the best biomass estimation model, with an approximate R2 value of 

0.7 and RMSE values of approximately 4.7 and 0.7 for fresh (FW) and dry weight (DW), 

respectively (Table 3.1). These results were consistent with previous studies, demonstrating high 

performance and accuracy of biomass estimation model deriving from RGB sideview traits 

(Tackenberg, 2007; Golzarian et al., 2011). Furthermore, there are various ways to improve 

biomass estimation models by using other morphological traits. For example, a study on common 

pea utilized plant height and width instead of plant area to form the biomass estimation model 

(Barboza et al., 2023). Another research on rice suggested including compactness in the model to 

account for the compact structure of rice plants (Elangovan et al., 2023). However, predicting 

biomass using only RGB sideview traits poses a significant challenge due to the diverse crop 

architectures of different plant species (Elangovan et al., 2023). 

There was a substantial difference in the accuracy of biomass estimation models derived from 

RGB sideview traits compared to other traits. The model derived from CF traits ranked as the 

second-best biomass estimation model. However, its performance and accuracy were comparable 

to the model derived from SI traits (Table 3.1). Although SI and CF traits are related to photo 

pigments that affect photosynthesis and physiological mechanisms of plants, weak correlations 

were found between harvested biomass and CF traits, while there was almost no significant 

correlation between harvested biomass and SI traits in this study (Figure 3.7). These findings 

provide supportive evidence for the lower performance of biomass estimation models derived from 

these two traits.  

Although many studies have utilized SI traits to study drought responses in plants, only a few 

directly interpret the results from visible reflectance. The common approach involves converting 

the color and other regions of reflectance into vegetation indices, which are widely used in plant 

phenotyping to estimate plant biophysical and biochemical traits (Koh et al., 2022). Vegetation 

indices (VIs) derived from the combination of RGB and near infrared (NIR) spectra have shown 
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effective results in detecting plant responses to drought in various species such as pea and rice 

(Nemeskéri et al., 2015; Kim et al., 2020; Javornik et al., 2023; Tafesse et al., 2022). Since this 

study only imaged the visible spectrum, it is limiting to quantify the various common types of VIs 

for plants' responses to drought. Therefore, considering a wider range of wavelengths, including 

visible and NIR, could be a potential approach to improve the understanding of plant responses 

under drought stress, rather than relying solely on the visible spectrum. Using VIs for estimating 

biomass has been successful in several research studies. For example, a field experiment on spring 

and winter pea using different types of VIs for biomass estimation models revealed a high positive 

correlation between harvested and estimated biomass (Vargas et al., 2019). There were other 

similar experiments were conducted on different plant species, such as wheat, oat, common bean, 

soybean, and rice, that also a high positive correlation between harvested and estimated biomass 

(Wang et al., 2016; Coelho et al., 2018; Carneiro et al., 2022; Barboza et al., 2023; Elangovan et 

al., 2023). 

RGB sideview traits are generally used for biomass estimation models, as they directly reflect the 

projected plant area of plants from different views, which is closely related to biomass. The 

performance of each view of images depends on plant architecture and structure. Therefore, using 

RGB sideview traits to derive biomass estimation models is a promising and effective approach. 

However, there are other traits that can play a role in plant growth and influence accumulated 

biomass. For example, SI and CF traits are related to alterations in leaf pigments, which in turn 

affect photosynthesis processes. Hence, combining different types of image-based phenotypic 

traits could improve the performance of biomass estimation models. In conclusion, while RGB 

sideview traits or plant area serve as effective predictors for biomass estimation models, other 

traits related to pigment alteration and photosynthesis processes can also contribute to plant growth 

and accumulated biomass. The incorporation of a diverse range of image-based phenotypic traits, 

including VIs derived from various wavelengths, presents an opportunity to enhance the 

performance and understanding of biomass estimation models in different plant species and under 

various environmental conditions. 
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4.3 The slight improvement of biomass estimation model with multiple types of image-based traits 

In this study, the biomass estimation models were enhanced by combining multiple types of image-

based traits instead of relying on a single type. The results demonstrated that the combination of 

multiple image-based traits slightly improved the accuracy of the biomass estimation models when 

RGB sideview traits were included in the developed model. The best models were achieved by 

combining RGB sideview and spectral imaging (SI) traits yielding an approximate R2 value of 

0.75 and 0.79, and an RMSE in testing data value of 4.30 and 0.68 for fresh weight (FW) and dry 

weight (DW), respectively (Table 3.2). The second-best model was achieved by combining all 

traits yielding the same values of R2 for both FW and DW, and an RMSE in training data. Only 

RMSE in testing data was slightly different which value of 4.31 (Table 3.2). While, using RGB 

sideview trait alone had an R2 value of approximately 0.70 and 0.76, and an RMSE value of 4.78 

and 0.73 for FW and DW, respectively. Similarly, the model combining RGB sideview and 

chlorophyll fluorescence (CF) traits also displayed improved accuracy in the biomass estimation 

model (Table 3.2). Only the combination of SI and CF traits did not exhibit improvement, likely 

due to their very low correlations with harvested biomass compared to the RGB sideview traits 

(Figure 3.7).  

There have been several studies exploring the combination of different types of traits to enhance 

biomass estimation and improve phenotyping accuracy. For instance, a study on common bean 

utilized plant height, width from destructive harvest, and vegetative indices (VIs), revealing that 

the model combining these traits yielded the highest accuracy compared to models using either 

trait alone (Barboza et al., 2023). However, it is important to note that this combination still 

required the inclusion of destructively harvested traits. In another study on soybean, the fusion of 

multispectral and thermal data was found to provide the best results for biomass estimation 

(Maimaitijiang et al., 2017). Additionally, this combination demonstrated the best estimates for 

nitrogen concentration, chlorophyll a content, and leaf area index (LAI) predictions, with the 

fusion of RGB and thermal data proving most effective (Maimaitijiang et al., 2017). Research 

focused on the combination of SI and CF to identify rice under stress conditions indicated that 

fusing visible and near-infrared spectral traits with CF traits had the potential to enhance plant 

stress type identification performance (Zhang et al., 2022). Furthermore, the combination of 

different traits has shown improvement in plant disease detection techniques. A study on wheat 

found that combining CF with SI traits enhanced disease detection capabilities for yellow rust in 
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wheat (Moshou et al., 2005). Although the combination of different types of image-based 

phenotypic traits for biomass estimation has received limited attention, most studies investigating 

trait combinations have demonstrated improvements in various areas, including disease detection, 

and nitrogen and chlorophyll content estimation. These findings highlight the potential of 

employing combinations of different image-based phenotypic traits to enhance the efficiency of 

high-throughput phenotyping, leading to increased accuracy. 

 

4.4 Future aspects 

The high-throughput plant phenotyping platform is a powerful tool for enhancing and accelerating 

phenotyping, which is a bottleneck in plant breeding programs. The usefulness of image-based 

phenotypic traits has been confirmed by numerous studies conducted on different plant species 

under various stress conditions. However, recent research suggests that the true bottleneck lies not 

in data acquisition but in data analysis of the vast datasets generated by high-throughput 

phenotyping in a short period (Campbell et al., 2018; Yang et al., 2020). This study aimed to 

improve biomass estimation models by combining multiple types of image-based phenotypic traits 

using the dataset obtained from the experiment. Such an approach has the potential to increase the 

value of information derived from the image-based phenotypic traits. When studying drought 

conditions with automatic high throughput phenotyping facilities, caution must be exercised in the 

irrigation process, as the frequency and amount of irrigation can impact plant growth and 

development, although this in itself can provide valuable insights for further study. 

Additionally, the timing of measurements must be carefully considered, as it varies among 

different plant species and the question to be addressed. For instance, research on rice biomass 

estimation revealed that the accuracy of the model decreased when rice was grown for more than 

six weeks due to the development of a more complex structure (Elangovan et al., 2023). Pea plants, 

with their climbing characteristics and ability to grow in multiple directions, possess a more 

complex structure. Understanding the architecture of pea plants and determining suitable ages or 

times for imaging could help alleviate the issue of leaf overlapping and enhance the usefulness of 

image-based phenotypic traits.  

While this study showed slight improvement in biomass estimation by combining different types 

of image-based phenotypic traits in a model, it indicates a positive direction for enhancing the 
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capabilities of image-based phenotypic traits, leaving room for further improvement. Exploring 

combinations of traits not included in this experiment, such as vegetation indices, thermal imaging, 

hyperspectral reflectance, 3D imaging, and short-wave infrared (SWIR) spectrum, could show the 

potential for more accurate biomass estimation. Thermal and SWIR spectra are closely related to 

temperature and water content in plants, providing plants water status and ability to cope drought 

stress which are useful for studying drought. Integrating these traits with existing data has the 

potential to enhance biomass estimation.  

Another suggestion is to consider accumulated data rather than specific data since biomass 

represents the total accumulation of plant growth until the measurement date. Research by others 

on peas demonstrated that forming biomass estimation models based on the summation of 

vegetation indices (VIs) yielded higher accuracy compared to averaging or using single time points 

of VIs (Vargas et al., 2019). Therefore, acquiring image data with time series information could 

further improve biomass estimation models, enabling the monitoring of growth and development. 

In addition, time series data could improve understanding plant responses and detect early 

responses to drought, which help in the selection of appropriate time points and traits for accurate 

biomass estimation. 
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Chapter 5: Conclusion 

 

In conclusion, the high-throughput plant phenotyping platform holds great promise for addressing 

the bottleneck of phenotyping in plant breeding programs. Image-based phenotyping provides 

valuable insights and enormous data with rapid results, reduced labor, and non-destructive 

harvesting. This study detected the effects of drought stress on pea growth using multimodal 

camera systems. Significant differences in image-based phenotypic traits were observed between 

pea plants grown under control and drought conditions. Moreover, the biomass estimation model 

formulated by RGB sideview traits, which relates to morphological and architectural traits, 

exhibited the highest accuracy compared to other models. The combination of spectral imaging 

traits, and chlorophyll fluorescence, or both, can further enhance the accuracy of biomass 

estimation models. Although the improvement in model accuracy was marginal, it represents a 

positive step towards interpreting the vast amount of data derived from image-based phenotypic 

traits. By exploring new trait combinations, such as vegetation indices and thermal imaging, we 

can unlock the potential for more robust biomass estimation, particularly in studying stress 

conditions. Continued advancements in high-throughput phenotyping techniques and the 

refinement of biomass estimation models are crucial for enhancing agricultural practices and 

increasing crop yield. Improving phenotyping models is important in agriculture as biomass 

production correlates with crop yield. By using the power of these innovative technologies, we 

pave the way for more efficient approaches to plant breeding and crop production. 

For further study of this pea experiment, the biomass estimation model developed in this study can 

be applied to estimate the biomass of pea plants that were not harvested during this experiment. 

Furthermore, the concept of combining different types of image-based phenotypic traits can be 

extended to the study of other plant traits, such as leaf area. Image-based phenotypic traits can be 

used to investigate variations among pea genotypes in terms of their morphological and 

physiological characteristics under drought stress. Examining the relationship between these traits 

and biomass could enhance our understanding of how different genotypes of plants respond to 

drought. Moreover, image-based traits can serve as supporting evidence for quantifying productive 

genotypes, enabling us to identify the specific traits that should be focused on to improve drought 

tolerance in pea breeding programs. 
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Appendix 
 

Appendix 3A.1: the effect of drought on harvested biomass and image-based phenotypic traits 

 

Table 3A.1.1 A two-way ANOVA of genetic effect, treatment, and their two-way interaction for biomass-related 

traits. (F and p values significant at a level of p < 0.05). 

Trait 
F-value (Probability of significance) 

Genetic effect (G) Treatment (T) Interaction (G x T) 

Total fresh weight (g) 2.339 (<0.001) * 371.687 (<0.001) * 0.927 (0.655) ns 

Total dry weight (g) 2.397 (<0.001) * 266.483 (<0.001) * 1.105 (0.331) ns 

1 The symbols showing in the table are significant level according to p value, '*' is significant, 'ns' is not significant.   

 

Table 3A.1.2 A two-way ANOVA of genetic effect, treatment, and their two-way interaction for biomass image-

based traits. (F and p values significant at a level of p < 0.05). 

RGB sideview traits (#) 
F-value (Probability of significance) 

Genetic effect (G) Treatment (T) Interaction (G x T) 

Top-view digital biomass 4.386 (<0.001) * 230.502 (<0.001) * 1.397 (0.002) * 

Side-view digital biomass 12.24 (<0.001) * 1161.14 (<0.001) * 1.56 (<0.001) * 

Side-view convex hull 12.60 (<0.001) * 814.97 (<0.001) * 12.60 (<0.001) * 

Side-view height 10.36 (<0.001) * 266.70 (<0.001) * 1.59 (<0.001) * 

Side-view solidity 15.77 (<0.001) * 27.07 (<0.001) * 1.53 (<0.001) * 

1 The symbols showing in the table are significant level according to p value, '*' is significant, 'ns' is not significant.   
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Table 3A.1.3 A two-way ANOVA of genetic effect, treatment, and their two-way interaction for color-based and 

spectral traits. (F and p values significant at a level of p < 0.05). 

Color-based and spectral 

traits 

F-value (Probability of significance) 

Genetic effect (G) Treatment (T) Interaction (G x T) 

Rred 5.153 (<0.001) * 63.805 (<0.001) * 1.439 (0.001) * 

Rgreen 6.668 (<0.001) * 97.783 (<0.001) * 1.393 (0.0012) * 

Rblue 5.081 (<0.001) * 7.768 (0.006) * 1.478 (<0.001) * 

HUE 7.578 (<0.001) * 153.806 (<0.001) * 1.498 (<0.001) * 

SAT 13.805 (<0.001) * 297.635 (<0.001) * 1.242 (0.029) * 

VAL 6.479 (<0.001) * 92.563 (<0.001) * 1.384 (0.002) * 

1 The symbols showing in the table are significant level according to p value, '*' is significant, 'ns' is not significant. 

 

Table 3A.1.4 A two-way ANOVA of genetic effect, treatment, and their two-way interaction for chlorophyll 

fluorescence traits. (F and p values significant at a level of p < 0.05). 

Chlorophyll fluorescence 

traits 

F-value (Probability of significance) 

Genetic effect (G) Treatment (T) Interaction (G x T) 

F0 7.331 (< 0.0001) * 5.878 (0.0156) * 1.060 (0.3030) ns 

Fm 5.174 (< 0.0001) * 0.170 (0.6799) ns 1.188 (0.0666) ns 

Fv/Fm 2.176 (< 0.0001) * 24.954 (< 0.0001) * 1.203 (0.0528) ns 

1 The symbols showing in the table are significant level according to p value, '*' is significant, 'ns' is not significant. 
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Appendix 3A.2: the effect of drought on each side-view pixel traits 
 

Table 3A.2.1 A two-way ANOVA of genetic effect, treatment, and their two-way interaction for side-view digital 

biomass. (F and p values significant at a level of p < 0.05). 

Digital biomass 
F-value (Probability of significance) 

Genetic effect (G) Treatment (T) Interaction (G x T) 

Side-view at 0o 11.36 (<0.001) * 1080.80 (<0.001) * 1.61 (<0.001) * 

Side-view at 60o 10.83 (<0.001) * 1002.77 (<0.001) * 1.53 (<0.001) * 

Side-view at 120o 10.41 (<0.001) * 967.00 (<0.001) * 1.35 (0.039) * 

Side-view at 180o 10.49 (<0.001) * 934.92 (<0.001) * 1.44 (0.006) * 

Side-view at 240o 10.73 (<0.001) * 1004.36 (<0.001) * 1.55 (<0.001) * 

Side-view at 300o 11.22 (<0.001) * 1106.15 (<0.001) * 1.48 (<0.001) * 

Average side-view 12.24 (<0.001) * 1161.14 (<0.001) * 1.56 (<0.001) * 

Median of side-view 12.16 (<0.001) * 1146.82 (<0.001) * 1.58 (<0.001) * 

Minimum side-view 11.46 (<0.001) * 1071.14 (<0.001) * 1.51 (0.001) * 

Maximum side-view 11.82 (<0.001) * 1137.71 (<0.001) * 1.50 (0.002) * 

1 The symbols showing in the table are significant level according to P value, '*' is significant, 'ns' is not significant.   

 

Table 3A.2.2 A two-way ANOVA of genetic effect, treatment, and their two-way interaction for side-view convex 

hull. (F and p values significant at a level of p < 0.05). 

Convex hull 
F-value (Probability of significance) 

Genetic effect (G) Treatment (T) Interaction (G x T) 

At 0o 9.28 (<0.001) * 588.62 (<0.001) * 1.67 (0.001) * 

At 60o 9.47 (<0.001) * 583.56 (<0.001) * 1.45 (0.005) * 

At 120o 9.16 (<0.001) * 569.53 (<0.001) * 1.45 (0.006) * 

At 180o 9.27 (<0.001) * 579.93 (<0.001) * 1.67 (<0.001) * 

At 240o 9.42 (<0.001) * 597.13 (<0.001) * 1.58 (<0.001) * 

At 300o 9.52 (<0.001) * 601.00 (<0.001) * 1.58 (<0.001) * 

Average 12.60 (<0.001) * 814.97 (<0.001) * 12.60 (<0.001) * 

Median 12.38 (<0.001) * 804.04 (<0.001) * 12.38 (<0.001) * 

Minimum 10.54 (<0.001) * 694.69 (<0.001) * 1.71 (<0.001) * 

Maximum 11.18 (<0.001) * 684.45 (<0.001) * 1.68 (<0.001) * 

1 The symbols showing in the table are significant level according to P value, '*' is significant, 'ns' is not significant.   
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Table 3A.3 A two-way ANOVA of genetic effect, treatment, and their two-way interaction for side-view plant 

height. (F and p values significant at a level of p < 0.05). 

Height 
F-value (Probability of significance) 

Genetic effect (G) Treatment (T) Interaction (G x T) 

At 0o 10.36 (<0.001) * 261.86 (<0.001) * 1.58 (<0.001) * 

At 60o 10.22 (<0.001) * 257.83 (<0.001) * 1.57 (<0.001) * 

At 120o 10.15 (<0.001) * 263.38 (<0.001) * 1.58 (<0.001) * 

At 180o 10.12 (<0.001) * 268.57 (<0.001) * 1.56 (<0.001) * 

At 240o 10.15 (<0.001) * 266.77 (<0.001) * 1.60 (<0.001) * 

At 300o 10.41 (<0.001) * 271.02 (<0.001) * 1.60 (<0.001) * 

Average 10.36 (<0.001) * 266.70 (<0.001) * 1.59 (<0.001) * 

Median 10.38 (<0.001) * 265.33 (<0.001) * 1.59 (<0.001) * 

Minimum 10.60 (<0.001) * 262.74 (<0.001) * 1.60 (<0.001) * 

Maximum 9.74 (<0.001) * 266.14 (<0.001) * 1.54 (<0.001) * 

1 The symbols showing in the table are significant level according to P value, '*' is significant, 'ns' is not significant.   

 

Table 3A.4 A two-way ANOVA of genetic effect, treatment, and their two-way interaction for side-view solidity. (F 

and p values significant at a level of p < 0.05). 

Solidity 
F-value (Probability of significance) 

Genetic effect (G) Treatment (T) Interaction (G x T) 

At 0o 8.46 (<0.001)  * 12.39 (0.005) * 1.24 (0.028) * 

At 60o 9.05 (<0.001) * 16.17 (<0.001) * 1.54 (<0.001) * 

At 120o 8.33 (<0.001) * 12.12 (0.005) * 0.89 (0.821) ns 

At 180o 8.30 (<0.001) * 16.62 (<0.001) * 1.22 (0.040) * 

At 240o 9.16 (<0.001) * 18.94 (<0.001) * 1.41 (0.001) * 

At 300o 9.41 (<0.001) * 12.37 (0.005) * 1.03 (0.378) ns 

Average 15.77 (<0.001) * 27.07 (<0.001) * 1.53 (<0.001) * 

Median 14.38 (<0.001) * 20.70 (<0.001) * 1.38 (0.002) * 

Minimum 11.25 (<0.001) * 4.91 (0.027) * 1.32 (0.007) * 

Maximum 14.24 (<0.001) * 47.43 (<0.001) * 1.65 (<0.001) * 

1 The symbols showing in the table are significant level according to P value, '*' is significant, 'ns' is not significant.   
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DB_Side at 0o (A) DB_Side at 60o (B) DB_Side at 120o (C)  

   

 

DB_Side at at 180o(D) DB_Side at 240o (E) DB_Side at 300o (F)  

   

 

Average DB_Side (G) Median DB_Side (H) Minimum DB_Side (I) Maximum DB_Side (J) 

    
Figure 3A.2.1  Box plots of each side-view digital biomass (DB) in cm2 of pea grown under controlled (blue) and 

drought-stressed (red) conditions at six different angles; 0o (A), 60 o (B), 120 o (C), 180 o (D), 240 o (E), 300 o (F), 

average (G), median (H), minimum (I), and maximum (J). The letter above the box plots indicate significant 

differences when comparing between treatment (p < 0.05) using Fisher’s protected LSD test. 
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CH at 0o (A) CH at 60o (B) CH at 120o (C)  

   

 

CH at 180o(D) CH at 240o (E) CH at 300o (F)  

   

 

Average CH (G) Median CH (H) Minimum CH (I) Maximum CH (J) 

    
Figure 3A.2.2  Box plots of each side-view convex hull in cm2 of pea grown under controlled (blue) and drought-

stressed (red) conditions at six different angles; 0o (A), 60 o (B), 120 o (C), 180 o (D), 240 o (E), 300 o (F), average (G), 

median (H), minimum (I), and maximum (J). The letter above the box plots indicate significant differences when 

comparing between treatment (p < 0.05) using Fisher’s protected LSD test. 
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Height at 0o (A) Height at 60o (B) Height at 120o (C)  

   

 

Height at 180o(D) Height at 240o (E) Height at 300o (F)  

   

 

Average Height (G) Median Height (H) Minimum Height (I) Maximum Height (J) 

    
Figure 3A.2.3  Box plots of each side-view plant height in cm of pea grown under controlled (blue) and drought-

stressed (red) conditions at six different angles; 0o (A), 60 o (B), 120 o (C), 180 o (D), 240 o (E), 300 o (F), average (G), 

median (H), minimum (I), and maximum (J). The letter above the box plots indicate significant differences when 

comparing between treatment (p < 0.05) using Fisher’s protected LSD test. 
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Solidity at 0o (A) Solidity at 60o (B) Solidity at 120o (C)  

   

 

Solidity at 180o(D) Solidity at 240o (E) Solidity at 300o (F)  

   

 

Average solidity (G) Median solidity (H) Minimum solidity (I) Maximum solidity (J) 

    
Figure 3A.2.4  Box plots of each side-view solidity of pea grown under controlled (blue) and drought-stressed (red) 

conditions at six different angles; 0o (A), 60 o (B), 120 o (C), 180 o (D), 240 o (E), 300 o (F), average (G), median (H), 

minimum (I), and maximum (J). The letter above the box plots indicate significant differences when comparing 

between treatment (p < 0.05) using Fisher’s protected LSD test. 
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Figure 3A.2.5 Correlation matrix for among all side-view morphological traits of pea grown under control and drought 

conditions. Positive and negative correlations are illustrated in blue and red colors, respectively. Color shade is 

proportional to the correlation coefficients, with their value shown in the color intensity bar; Average (ave), median 

(med), minimum (min), and maximum (max) of digital biomass (DB), convex hull (CH), height (H), solidity (Solid), 

respectively. and total dry weight (Dry.W). 

 

 

 

 

 



66 

 

Appendix 3A.3: Criteria for evaluating the correlation coefficient. 

 

Table 3A.3.1 Criteria for evaluating the correlation coefficient, where r is correlation coefficient. 

Values Interpretation 

0.90 < r <= 1.00 Very high positive (negative) correlation 

0.70 < r <= 0.90 High positive (negative) correlation 

0.50 < r <= 0.70 Moderate positive (negative) correlation 

0.30 < r <= 0.50 Low positive (negative) correlation 

0.00 < r <= 0.30 Very low positive (negative) correlation 
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Appendix 3A.4: Loading scores for each principal component. 

 

Table 3A.4.1 Trait loading scores of image-based phenotyping traits for each principal component. 

Traits 
Factor loadings 

Dim1 Comp.2 

DB_Top1 0.069 0.422 

DB_Side 0.177 0.232 

CH 0.254 0.266 

Height 0.275 0.236 

Solidity -0.264 -0.167 

RRed 0.366 -0.230 

RGreen 0.374 -0.115 

RBlue 0.319 -0.269 

HUE -0.335 0.082 

SAT 0.200 0.242 

VAL 0.373 -0.123 

F0 0.127 0.361 

Fm -0.003 0.475 

Fv/Fm -0.266 0.200 

Standard deviation 1.490 0.708 

Proportion of Variance 0.741 0.167 

Cumulative proportion 0.741 0.908 

1 top-view digital biomass (DB_Top), side-view digital biomass (DB_Side), reflectance of red color (RRed), 

reflectance of green color (RGreen), reflectance of blue color (RBlue), hue, saturation, value, minimum fluorescence 

of dark-adapted leaves (F0), maximum fluorescence of dark-adapted leaves (Fm), and maximum quantum yield of 

photosystem II (PSII) photochemistry (Fv/Fm). 

2 Bold number indicated the maximum magnitude of loading score among two principal components. 
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Appendix 3A.5: Parameter selection for biomass estimation model with single type of traits 

 

To select parameters for biomass estimation models using a single sensor, multicollinearity was considered among 

the parameters obtained from the same sensor. Two criteria were used: correlation coefficients and variance inflation 

factor (VIF). The correlation coefficients were examined first, and parameters with a correlation coefficient higher 

than 0.7 (Songara, 2022) were identified as having a strong relationship with others, indicating multicollinearity. In 

such cases, only one parameter was selected, while the others were excluded. The remaining parameters were then 

used to form multiple linear regression models, taking into account the VIF values. Parameters with a VIF greater 

than 2.5 showed multicollinearity properties and were excluded (Johnston et al., 2018). One parameter was selected 

based on its model performance, particularly its higher correlation of determination. This process was repeated until 

all VIF values for the parameters in the models were lower than 2.5. Finally, the set of parameters for the biomass 

estimation model formulation was determined. 

Regarding RGB sideview traits, there were five parameters: the top-view pixel measured by the CropReporter camera 

(DB_Top), the average of side-view pixels imaged by RGB sideview cameras (DB_Side), convex hull (CH), height, 

and solidity. The correlation between solidity and height was lower than -0.70, showing high negative correlation, 

hence, solidity was eliminated since it also had lower correlation to fresh (FW) and dry weight (DW) than height 

(Figure 3.7). Meanwhile, height had a very high positive with convex hull area and had lower correlation coefficient 

with FW and DW compared with convex hull, then height was also excluded from the model formulation (Figure 3.7). 

Lastly, convex hull area had a high positive correlation with DB_Side and lower correlation coefficient with FW and 

DW than in DB_Side, then convex hull was not considered in the model. Therefore, there were only two traits using 

for model formulation from RGB sideview traits which were DB_Top and DB_Side, and there were no 

multicollinearity problems found after formulation (Table 3A.5.1). 

In the case of spectral imaging (SI) traits, the reflectance of red (RRed), green (RGreen), blue (RBlue), and value 

(VAL) parameters showed a strong correlation among each other, with correlation coefficients higher than 0.7 (Figure 

3.7). Among them, RGreen exhibited the strongest correlation with FW and DW compared to the others, leading to 

its selection as the primary parameter. The remaining three parameters, RGreen, HUE, and saturation (SAT), were 

assessed for VIF values. The results indicated that RGreen and HUE had VIF values higher than 2.5 (2.50 and 3.06, 

respectively), while the VIF value of SAT was 1.67 (Table 3A.4). Consequently, two multiple linear regression models 

were formulated: one comprising RGreen and SAT, and the other involving HUE and SAT. Neither model exhibited 

multicollinearity properties, as their VIF values were lower than 2.5 (Table 3A.4). To determine the most appropriate 

parameters, the correlation of determination (R2) was considered. The results revealed that the model with HUE had 

a higher R2 value compared to the one with RGreen (0.10 and 0.07, respectively). Therefore, SAT and HUE were 

included in the biomass estimation model based on SI traits. 

Finally, for chlorophyll fluorescence (CF) traits, three parameters were considered: F0, Fm, and Fv/Fm. The correlation 

coefficient between F0 and Fm was found to be very strong, with a value of 0.85 (Figure 3.7). Consequently, Fm was 

selected as it displayed a higher correlation with FW and DW compared to F0. Additionally, the VIF values indicated 
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no multicollinearity properties, with a value of 1.09. Hence, Fm and Fv/Fm were included in the biomass estimation 

model derived from CF traits. 

 

Table 3A.5.1 Variance inflation factor (VIF) values for each variable used in biomass estimation models with single 

type of traits, its correlation of determination (R2), and remark from each model. 

Biomass estimation 

model with single 

type of traits 

Variance inflation factor (VIF) values 

R2 Remarks 
DB_Top DB_Side RGreen HUE SAT Fm Fv/Fm 

RGB sideview traits 

    2 variables 1.77 1.77 - - - - - 0.76 Selected1 

Spectral imaging traits 

    3 variables - - 2.50 3.06 1.67 - - 0.11 Colinear 

    2 variables - - 1.36 - 1.36 - - 0.07  

    2 variables - - - 1.67 1.67 - - 0.10 Selected 

Chlorophyll fluorescence traits 

    2 variables - - - - - 1.09 1.09 0.19 Selected 

1 Remarks indicated status of the considering model, ‘Colinear’ means the model with that set of parameters had 

multicollinearity problem, and ‘Selected’ means the model with that set of parameters was selected for biomass 

estimation model formulation; top-view digital biomass (DB_Top), side-view digital biomass (DB_Side), hue (HUE), 

saturation (SAT), maximum fluorescence of dark-adapted leaves (Fm), and maximum quantum yield of photosystem 

II (PSII) photochemistry (Fv/Fm). 
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Appendix 3A.6: Parameter selection for biomass estimation model with multiple types of traits 

 

Biomass estimation models were formulated using multiple types of image-based phenotypic traits in four scenarios: 

(i) a combination of RGB sideview, and spectral imaging (SI) traits, (ii) a combination of RGB sideview and 

chlorophyll fluorescence (CF) traits, (iii) a combination of SI and CF traits, and (iv) a combination of all traits. The 

initial models were formulated by combining parameters from the models with single types of phenotypic traits. 

Similar to the models with single types of phenotypic traits, the parameters used in each model were selected by 

considering the correlation among traits and variance inflation factor (VIF) values. One parameter was excluded from 

the model until there were no multicollinearity issues. 

The model derived from the combination of RGB sideview, and SI traits initially included four variables: top-view 

digital biomass (DB_Top), side-view digital biomass (DB_Side), HUE, and saturation (SAT), as there were no 

multicollinearity issues. These four parameters were then included in the model formulation (Table 3A.6.1). 

For the model with the combination of RGB sideview and CF traits, the model started with four variables: DB_Top, 

DB_Side, maximum fluorescence of dark-adapted leaves (Fm), and and the maximum quantum yield of photosystem 

II (PSII) photochemistry (Fv/Fm). However, there was a multicollinearity issue due to a higher VIF value (>2.5) in 

DB_Top (Table 3A.6.1). Therefore, one of the two parameters with the highest VIF value was eliminated. Based on 

the correlation of determination (R2), the model excluded Fm, which provided a higher R2. Thus, three variables, 

excluding Fm, were selected for the model with the combination of RGB sideview and CF traits (Table 3A.6.1). 

Similarly, the combination of SI and CF traits model indicated multicollinearity with four variables (Table 3A.6.1). 

Excluding HUE from the model provided a higher R2 compared to excluding SAT and resolved the multicollinearity 

problem. Therefore, HUE, Fm, and Fv/Fm were used to formulate the biomass estimation model in this case (Table 

3A.6.1). 

Lastly, the model with the combination of all traits included all six parameters, but multicollinearity was observed in 

four of them (Table 3.7). Even after eliminating one of these parameters, multicollinearity still persisted. 

Consequently, the model with five parameters, excluding SAT, was used as a base model for further parameter 

reduction, as it showed the highest R2 among the models with five variables (Table 3A.6.1). Either DB_Top or Fm was 

eliminated from the model since these two parameters had the highest VIF values (Table 3A.6.1). The results indicated 

that removing Fm from the model provided a higher R2. Therefore, the model with the combination of all traits 

consisted of four parameters: DB_Top, DB_Side, HUE, and Fv/Fm (Table 3A.6.1). 
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Table 3A.6.1 Variance inflation factor (VIF) values for variables used in biomass estimation models with multiple 

type of traits, its correlation of determination (R2), and remark from each model. 

Biomass estimation 

model with multiple 

types of traits 

Variance inflation factor (VIF) values 

R2 Remarks 
DB_Top DB_Side HUE SAT Fm Fv/Fm 

RGB sideview, and spectral imaging traits 

    4 variables 2.11 2.01 1.93 2.03 - - 0.755 Selected1 

RGB sideview and chlorophyll fluorescence traits 

    4 variables  3.47 1.97 - - 2.22 1.10 0.777 Colinear 

    3 variables - 1.12 - - 1.21 1.10 0.720  

    3 variables 1.90 1.83 - - - 1.07 0.774 Selected 

Spectral imaging, and chlorophyll fluorescence traits 

    4 variables - - 2.88 3.30 2.11 1.65 0.157 Colinear 

    3 variables - - - 1.74 1.79 1.38 0.157 Selected 

    3 variables - - 1.52 - 1.11 1.65 0.154  

All traits  

    6 variables 3.64 2.21 3.08 3.44 3.74 1.67 0.797 Colinear 

    5 variables - 1.25 3.06 3.30 2.21 1.67 0.742 Colinear 

    5 variables 3.62 2.17 - 1.91 3.22 1.38 0.779 Colinear 

    5 variables 3.49 2.17 1.71 - 2.23 1.67 0.794 
Colinear & 

Check  

    5 variables 2.15 2.01 2.65 2.06 - 1.62 0.792 Colinear 

    4 variables - 1.25 1.70 - 1.21 1.67 0.742  

    4 variables 1.90 2.00 1.70 - - 1.60 0.792 Selected 

1 Remarks indicate the status of the considered models. "Colinear" means that the model with that set of parameters 

had a multicollinearity problem. "Selected" means that the model with that set of parameters was chosen for biomass 

estimation model formulation. "Colinear & Check" means that the model with that set of parameters had a 

multicollinearity problem, but it was the best model with a certain number of variables. In this case, the model was 

used to further check multicollinearity by reducing one variable: top-view digital biomass (DB_Top), side-view digital 

biomass (DB_Side), hue (HUE), saturation (SAT), maximum fluorescence of dark-adapted leaves (Fm), and maximum 

quantum yield of photosystem II (PSII) photochemistry (Fv/Fm). 
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Appendix 4A.1: Irrigation data in the experiment 

 

 

Figure 4A.1.1 The pot weight (A) and cumulative weight of water added (B) during the whole experiment; Blue and 

red horizontal line represented threshold of weight at 70% of field capacity (FC) and 30% FC for control and drought 

treatment, respectively. 

 

Appendix 4A.2: Flowering pea plant during the experiment 

 

         

Figure 4A.2.1 Pea plants with flowers and peas were observed just one week before the imaging measurement. 


