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Abstract

PeasPisum sativum [Lare valuable protein sources for both human food and livestock feed, while
also contributing to soil fertility. However, thegherfrequency of global droughts has negatively
impacted pea yield and protein content. To address this, breeding programngrionitsze
enhancing pea adaptation and resilience to drought stress. In this regardbasedehigh
throughput phenotyping platforms offer an efficient solution for screening large populations,
enabling nordestructive acquisition of numerous phendaytpaits. Multimodal camera systems
such as ()RGB imaging for architecture and morpholodyi) spectral imagingfor pigment
contents, andiii) chlorophyll fluorescencémagingfor photosynthesis, provide diverse image
based phenotypic datduchtypes ofdata have proven valuable for developing biomass estimation
models, crucial for monitoring crop growth and yield predictions. However, existing studies
predominantly focus on using a single type of camera system for biomass estimation. Since
different camera systendetectdistinct types of plant characteristicsthe ability to combire
differenttypes ofphenotypic traitxould bea potential approach to enhance biomass estimation
models. To explore this, a greenhouse experiment was condaatedltiatel80 peagenotypes
responses to drought usingultimodal imagebased phenotypingSubsequently, biomass
estimation models were developed using sirtgfe and multiple types oftraits. The results
indicated that pea plants exhibited greater b&smander controthan drought conditions,
consistent with digital biomass derived from RGB imaging. However, unexpected outcomes were
observed incolor, reflectance, and photosynthesis traits, potentially influenced by the plant's
growth stage during meaement and the experimental water regimes. Combining diffgees

of imagebased phenotypic traits multiple trait modelsyielded slight improvements in biomass
estimation model accuracy{R 0.79, RMSE = 0.73) compared to models using a singjtetype

(R? = 0.76, RMSE = 0.68). This study highlights thmitations as well as th@otential of
combining different traits to enhance biomass estimation accuraajisougses thapproach for

advancing plant phenotyping capabilities.

Keywords: biomass estimation / chlorophyll fluorescence / Higtoughput phenotyping /

imagebased phenotypic traits / spectral imaging / pea
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Chapter 1: Introduction

1.1 Impact of drought in pea cultivation

Pea Pisum sativuni..) is a multipurpose crop and is ranked as the fourth most cultivated pulse
crop in the worldPandey et al., 2021peas are an important source of protein and have been used
as livestock feed and human food for centu¢iegbiales et al., 2015)n addtion, peas improve

soil fertility and play a role in the nitrogen cycle by fixing atmospheric nitrogen to the soil through
symbiotic interactions with selborne bacterigPoore et al., 2018)in the current context of
climate change, unpredictable weatpatterns, reduced precipitation, and fluctuations in rainfall
have led to more frequent droughts worldw{l@had et al., 2017; Jaghdaatial, 2021) As a

result, pea yield and protein content are unstable, and the cultivated area of pea has decreased
(Cernay et al., 2015 nder drought conditions, plants generally respond by closing their stomata

to reduce water loss, which can decrease photosynthesis and lead to a reduction in biomass
accumulatiorand yield productiofiChaves et al., 2003; Xat al, 2010) Therefore, it is important

for breeding programs to improve pea adaptation and resilience to droughtRtiteisses et al.,

2015. Hence, the ability to identify these traits in large quantities of phenotypic data is required
to keep up gnomic data (Reynolds al, 2019). Highthroughput phenotyping platforms could be
efficient tools for screening large populations, which would increase the acquisition of phenotypic
data, reduce the gap between genomic and phenomic data and beconeduddpiior breeding
programs (Crairet al, 2018).

1.2 Highthroughput phenotyping

A high-throughput phenotyping platform has great potential in improving the accuracy, efficiency,
speed, and quality of determining crop growth and developroempared to conventional
phenotyping (Pabuayon et al., 2019). Additionally, it enables the acquisition of numerous
phenotypic traits using digital and automated methods. lthaged higkthroughput phenotyping
assists in the computation of phenotypes bglyaring a large number of plants in a short time
interval (Das Choudhury et al., 2016; Das Choudhury et al., 2018). Furthermore, the images
provide spatial variation of information at the whelant level, which provideslata thatis

difficult to measureising conventional phenotypinghe progress of current analytical techniques
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has significantly contributed to highroughput plant phenotyping (Campbell et al., 2018; Yang
et al.,, 2020; Singh et al.,, 2021; Song et al., 202lthagebased phenotypingcaptured by
multimodal cameragroviding differentvaluable information of plastmechanisms. There are
three types of camera systeimshis experiment and often used in similar experiments elsewhere
in imagebased phenotypinguch as (i) RGBideviewimaging, (ii) spectral imagindSl), and

(i) chlorophyll fluorescencéCF) imaging(Figure 1.1).

Figure 1.1 The images of @a (genotyp&m94) captured using differemtamera system&GB sideview

imaging(left); spectral imagingmiddle); chlorophyll fluorescencienaging(right).

RGB sideview imaging, the firsttypeofimagea s ed phenotyping, provides
shape and area. The extracted traits from these incagdse linked to several conventional plant

traits such as morpholacal and architectd traits The rumber of plant pixels in an image can

be interpreted as plant biomass, often multiple views of a plant are captured bytableirn

Moreover, traits extracted from RGB sideview imaging can be linked to shape and density of
plants, which is useful for mawiring plant growth and developmg@tnandan et al., 202&im

et al., 2020).

The second type is spectral imaging (@l)technique that combines spectroscopy with digital
imaging to scan multiple spectra and analyze discrete lohmgs/elengthsvithin electromagnetic
spectrum It provides diverse information on pigmer{esg. chlorophyll carotenoids)water,

nutrients, proteins, and carbohydrates, allowing fooaecomprehensive understanding of plant
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physiology and biochemistrgpectral indices derived from different wavelengths can be used to
study plant responses to stressors and estimate foliar traits and biomassSWiribeides
chemical and physiological insights, it does netessarilyprovide specific details on plant
mechanisms (Polder et al., 2021; Michelon et al., 2023; Cotrozzi & Couture, 2020; Kim et al.,
2011; Couture et al., 2013; Serbin et al., 2015; Kumar et al., 2021).

The third type ischlorophyll fluorescence (CHmaging, which focuses on théunctioning of
photosystem Il (PSIl) and measures the light emitted by green plant tissue when illumittated
specific wavelengths. It provides information about photosynthesis and the photosynthetic activity
of PSII. Additionally, CF imaging is effective in assesgirplant stress and has been used to
determine photosynthetic traits and detect early stress symptoms-tintagghput phenotyping
(Baker, 2008; Porcatastell et al., 2014; Maxwell & Johnson, 2000; Murchie & Lawson, 2013;
Kumar et al., 2021; Kalaji et.al2017; Chaerle et al., 2003).

1.3 Imagebased biomass estimation model

Image-based phenotypic traitsin also determine plant biomass without the need for a destructive
harvest (Furbankt al, 2011; Neumanet al, 2015). This method is widely usedagriculture,

and both linear and ndimear models are utilized to estimate biomass (Tackenberg, 2007,
Golzariaret al, 2011; Rahamaet al, 2017). Linear models based on plant area are more effective
than nonrlinear models, but their estimation errort@é® large for accurate biomass estimation
(Leisteret al, 1999; Golzariaet al, 2011) Apart from plant area derived from 2D RGB sideview
imaging, hereareother significant traits that also affect plant growth and biomass should be taken
into consideration. Rahamanal (2017) proposed the linear biomass model as a function of plant
area, plant compactness, and plant age. The resulst studyconfirmed that including more
significant traits can improve biomass estimation accuracy of the model. However, the traits used
in this study derived from the samamera system&hich is 2D RGB sideviewimaging. The
interesting question is if the combinationathertraits from differenttypes of camera systems
improves biomass estimation. Therefore, an alternative method for estimating biomass that

considers other traits in additionRE&B sideview imagings needed.



1.4The combination of multiple traits f@henotyping improvement

RGB sideview imaging, spectral imaging traits (Sl), ahbrophyll fluorescenc¢CF) imaging

have been proved their effectiveness for phenotyping individuallet(lal, 2010; Fenget al,
2018).RGB sideview imaging has a stgprelationship with plant architecture and morphology.
Slinformation has an advantaggh regard tanonitoring general compositions of various plants
mechanisms and nutrient contents, wkilehas a strong relationship with photosynthesisich

are bothrelated to biomass productiorlowever, thereare a few studieshat focus on the
combination ofthese different types of imagingsing for plant phenotypingnd biomass
estimation Since each type of imaging reflects different mechanisms of plants, the combination
of different types of imaging could increase potential of phenotyfdgneret al, 2012 Zhang

et al, 209. Some studiebaveattempedto test the performances @aimhnationof data acqued

by different types ofmaging For exampleat theagriculturatfield level, the fusion of Light
Detection and Ranging (LIDAR® 3D shape analysis technigaed spectral data showed the
highest biomass estimation accuracy of mganget al, 2016).Another study onFusarium

head blight of wheat indicated théte combination ofSI and CFis more suitable for disease
detection than using single data typethodgMabhlein et al., 2019)nstead of considering only
traits derivedrom RGB imaging, it is possible that the combination of RGB imaging with either
S| or CF or both could be a potential approach to improve the accuracy of biomass estimation,

which couldincrease capability of plant phenotyping.

1.5 Research aims and easch questions

This study aims to assess whether comtidm of RBG sideviewmagingwith spectral imaging
traits (Sl)andchlorophyll fluorescencéCF) improvesthe accuracy of biomass estimation models
for peaplantsunder drought conditions. The hypothesis is that combitiaigs from RGB
sideview imaging witheither traits from Sl or CF or botis expected to enhance biomass
estimation accuracyeach type of trait captures different plant characteristics relateidntass
accumulation. RGB sideview imaging directly reflects morphology and architecture for. flants
is expected tdhave ahigh correlationwith harvested biomasand contribue most tobiomass
estimation accuracysl captures reflectance from various plamitrients and pigments, while CF
captures fluorescence emitted from photosynthetic actii#gynce, these two types of imaging are



also expected to have correlations with harvested biomass, but not higher tharotraiRsSB
sideview imaging.Combining all possibldraits from RGB sideview imagingSl, and CF is
expected to yield the highest accuracy in biomass estimation. On the other hand, combining RGB
sideviewimaging with eitheS1 or CF is expected to result inaverbiomass estimatioaccuracy,
although it is still higher than using onRGB sideview imagingThis study will therefore

investigateone main research question an subresearch questions, which are:

Main research question:

1. Can the combination dRGB sideview traitsvith spectral topview imaging traitand
chlorophyll fluorescencéaitsimprove the accuracy of biomass estimation model of pea

under drought stress?

Sub research questions:

1.11s there a relationship amohgrvestediomassRGB sideview traits, spectral topview
imaging traitsandchlorophyll fluorescenctaits in pea under drought stress?
1.2 Which imagebased phenotypic traits contributing most tdhe highest accuracy of

biomass estimation modgel



Chapter 2: Materials and methods

This research consssof four parts First, a greenhouse experimevasconducted with 180 pea
genotypes atwo different levels of water supplyecond all plantswere measuredor image
based traits using different camesgstems and the plantsvere destructively harvested for
biomass traitsThird, imaging datavasextracted, and the datasthen used for the data analysis.
The mean differences in each trait betwpmts grown in control and drought conditiomas
investigated. Additionally, the correlation between imbgeed traits and the biomass of the
destructive harvesivas determined.Fourth biomass estimation modelvere formulated and
evaluated. The conckfal research framework is shown in Figure 2.1, and the details of each

methodaredescribed in the following sectien

Figure 2.1 Research framework summarized in the approach. Short description of methodology.
Abbreviations: FC: Field Capacity, NPEC: the Netherlands BaaphenotypingCentre.

2.1 Experimental design
A pot experimentvas conducted in an environmentally controlled greenhouse (the Netherlands
Plant Eco-phenotypingCentre (NPEC) greenhouse, Wageningen University and Research, the

Netherlands). Themweretwo factors in this study, whickerepea genotypes and water irrigatio









































































































































































































