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Abstract 

 

Peas (Pisum sativum L.) are valuable protein sources for both human food and livestock feed, while 

also contributing to soil fertility. However, the higher frequency of global droughts has negatively 

impacted pea yield and protein content. To address this, breeding programs must prioritize 

enhancing pea adaptation and resilience to drought stress. In this regard, image-based high-

throughput phenotyping platforms offer an efficient solution for screening large populations, 

enabling non-destructive acquisition of numerous phenotypic traits. Multimodal camera systems, 

such as (i) RGB imaging for architecture and morphology, (ii) spectral imaging for pigment 

contents, and (iii) chlorophyll fluorescence imaging for photosynthesis, provide diverse image-

based phenotypic data. Such types of data have proven valuable for developing biomass estimation 

models, crucial for monitoring crop growth and yield predictions. However, existing studies 

predominantly focus on using a single type of camera system for biomass estimation. Since 

different camera systems detect distinct types of plant characteristics, the ability to combine 

different types of phenotypic traits could be a potential approach to enhance biomass estimation 

models. To explore this, a greenhouse experiment was conducted to evaluate 180 pea genotypes 

responses to drought using multimodal image-based phenotyping. Subsequently, biomass 

estimation models were developed using single type and multiple types of traits. The results 

indicated that pea plants exhibited greater biomass under control than drought conditions, 

consistent with digital biomass derived from RGB imaging. However, unexpected outcomes were 

observed in color, reflectance, and photosynthesis traits, potentially influenced by the plant's 

growth stage during measurement and the experimental water regimes. Combining different types 

of image-based phenotypic traits in multiple trait models yielded slight improvements in biomass 

estimation model accuracy (R2 = 0.79, RMSE = 0.73) compared to models using a single trait type 

(R2 = 0.76, RMSE = 0.68). This study highlights the limitations as well as the potential of 

combining different traits to enhance biomass estimation accuracy and discusses the approach for 

advancing plant phenotyping capabilities. 

Keywords:  biomass estimation / chlorophyll fluorescence / high-throughput phenotyping / 

image-based phenotypic traits / spectral imaging / pea 
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Chapter 1: Introduction  

 

1.1 Impact of drought in pea cultivation 

Pea (Pisum sativum L.) is a multipurpose crop and is ranked as the fourth most cultivated pulse 

crop in the world (Pandey et al., 2021). Peas are an important source of protein and have been used 

as livestock feed and human food for centuries (Rubiales et al., 2015). In addition, peas improve 

soil fertility and play a role in the nitrogen cycle by fixing atmospheric nitrogen to the soil through 

symbiotic interactions with soil-borne bacteria (Poore et al., 2018). In the current context of 

climate change, unpredictable weather patterns, reduced precipitation, and fluctuations in rainfall 

have led to more frequent droughts worldwide (Fahad et al., 2017; Jaghdani et al., 2021). As a 

result, pea yield and protein content are unstable, and the cultivated area of pea has decreased 

(Cernay et al., 2015). Under drought conditions, plants generally respond by closing their stomata 

to reduce water loss, which can decrease photosynthesis and lead to a reduction in biomass 

accumulation and yield production (Chaves et al., 2003; Xu et al., 2010). Therefore, it is important 

for breeding programs to improve pea adaptation and resilience to drought stress (Rubiales et al., 

2015). Hence, the ability to identify these traits in large quantities of phenotypic data is required 

to keep up genomic data (Reynolds et al., 2019). High-throughput phenotyping platforms could be 

efficient tools for screening large populations, which would increase the acquisition of phenotypic 

data, reduce the gap between genomic and phenomic data and become helpful tools for breeding 

programs (Crain et al., 2018). 

 

1.2 High-throughput phenotyping 

A high-throughput phenotyping platform has great potential in improving the accuracy, efficiency, 

speed, and quality of determining crop growth and development compared to conventional 

phenotyping (Pabuayon et al., 2019). Additionally, it enables the acquisition of numerous 

phenotypic traits using digital and automated methods. Image-based high-throughput phenotyping 
assists in the computation of phenotypes by analyzing a large number of plants in a short time 

interval (Das Choudhury et al., 2016; Das Choudhury et al., 2018). Furthermore, the images 

provide spatial variation of information at the whole-plant level, which provides data that is 

difficult to measure using conventional phenotyping. The progress of current analytical techniques 
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has significantly contributed to high-throughput plant phenotyping (Campbell et al., 2018; Yang 

et al., 2020; Singh et al., 2021; Song et al., 2021).  Image-based phenotyping, captured by 

multimodal cameras providing different valuable information of plants mechanisms. There are 

three types of camera systems in this experiment and often used in similar experiments elsewhere 

in image-based phenotyping, such as (i) RGB sideview imaging, (ii) spectral imaging (SI), and 

(iii) chlorophyll fluorescence (CF) imaging (Figure 1.1). 

 

     

Figure 1.1 The images of pea (genotype Sp094) captured using different camera systems: RGB sideview 

imaging (left); spectral imaging (middle); chlorophyll fluorescence imaging (right). 

  

RGB sideview imaging, the first type of image-based phenotyping, provides information on plantôs 

shape and area. The extracted traits from these images can be linked to several conventional plant 

traits such as morphological and architectural traits. The number of plant pixels in an image can 

be interpreted as plant biomass, often multiple views of a plant are captured by a turn-table. 

Moreover, traits extracted from RGB sideview imaging can be linked to shape and density of 

plants, which is useful for monitoring plant growth and development (Anandan et al., 2020; Kim 

et al., 2020).  

The second type is spectral imaging (SI), a technique that combines spectroscopy with digital 

imaging to scan multiple spectra and analyze discrete bands of wavelengths within electromagnetic 

spectrum. It provides diverse information on pigments (e.g. chlorophyll, carotenoids), water, 

nutrients, proteins, and carbohydrates, allowing for a more comprehensive understanding of plant 
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physiology and biochemistry. Spectral indices derived from different wavelengths can be used to 

study plant responses to stressors and estimate foliar traits and biomass. While SI provides 

chemical and physiological insights, it does not necessarily provide specific details on plant 

mechanisms (Polder et al., 2021; Michelon et al., 2023; Cotrozzi & Couture, 2020; Kim et al., 

2011; Couture et al., 2013; Serbin et al., 2015; Kumar et al., 2021). 

The third type is chlorophyll fluorescence (CF) imaging, which focuses on the functioning of 

photosystem II (PSII) and measures the light emitted by green plant tissue when illuminated with 

specific wavelengths. It provides information about photosynthesis and the photosynthetic activity 

of PSII. Additionally, CF imaging is effective in assessing plant stress and has been used to 

determine photosynthetic traits and detect early stress symptoms in high-throughput phenotyping 

(Baker, 2008; Porcar-Castell et al., 2014; Maxwell & Johnson, 2000; Murchie & Lawson, 2013; 

Kumar et al., 2021; Kalaji et al., 2017; Chaerle et al., 2003). 

 

1.3 Image-based biomass estimation model 

Image-based phenotypic traits can also determine plant biomass without the need for a destructive 

harvest (Furbank et al., 2011; Neumann et al., 2015). This method is widely used in agriculture, 

and both linear and non-linear models are utilized to estimate biomass (Tackenberg, 2007; 

Golzarian et al., 2011; Rahaman et al., 2017). Linear models based on plant area are more effective 

than non-linear models, but their estimation error is too large for accurate biomass estimation 

(Leister et al., 1999; Golzarian et al., 2011). Apart from plant area derived from 2D RGB sideview 

imaging, there are other significant traits that also affect plant growth and biomass should be taken 

into consideration. Rahaman et al. (2017) proposed the linear biomass model as a function of plant 

area, plant compactness, and plant age. The results of that study confirmed that including more 

significant traits can improve biomass estimation accuracy of the model. However, the traits used 

in this study derived from the same camera systems which is 2D RGB sideview imaging. The 

interesting question is if the combination of other traits from different types of camera systems 

improves biomass estimation. Therefore, an alternative method for estimating biomass that 

considers other traits in addition to RGB sideview imaging is needed.   

 



4 

 

1.4 The combination of multiple traits for phenotyping improvement 

RGB sideview imaging, spectral imaging traits (SI), and chlorophyll fluorescence (CF) imaging 

have been proved their effectiveness for phenotyping individually (Li et al., 2010; Feng et al., 

2018). RGB sideview imaging has a strong relationship with plant architecture and morphology. 

SI information has an advantage with regard to monitoring general compositions of various plants 

mechanisms and nutrient contents, while CF has a strong relationship with photosynthesis, which 

are both related to biomass production. However, there are a few studies that focus on the 

combination of these different types of imaging using for plant phenotyping and biomass 

estimation. Since each type of imaging reflects different mechanisms of plants, the combination 

of different types of imaging could increase potential of phenotyping (Römer et al., 2012; Zhang 

et al., 202). Some studies have attempted to test the performances of combination of data acquired 

by different types of imaging. For example, at the agricultural-field level, the fusion of Light 

Detection and Ranging (LiDAR), a 3D shape analysis technique, and spectral data showed the 

highest biomass estimation accuracy of maize (Wang et al., 2016). Another study on Fusarium 

head blight of wheat indicated that the combination of SI and CF is more suitable for disease 

detection than using single data type methods (Mahlein et al., 2019). Instead of considering only 

traits derived from RGB imaging, it is possible that the combination of RGB imaging with either 

SI or CF or both could be a potential approach to improve the accuracy of biomass estimation, 

which could increase capability of plant phenotyping.  

 

1.5 Research aims and research questions 

This study aims to assess whether combination of RBG sideview imaging with spectral imaging 

traits (SI) and chlorophyll fluorescence (CF) improves the accuracy of biomass estimation models 

for pea plants under drought conditions. The hypothesis is that combining traits from RGB 

sideview imaging with either traits from SI or CF or both is expected to enhance biomass 

estimation accuracy. Each type of trait captures different plant characteristics related to biomass 

accumulation. RGB sideview imaging directly reflects morphology and architecture for plants. It 

is expected to have a high correlation with harvested biomass and contribute most to biomass 

estimation accuracy. SI captures reflectance from various plant nutrients and pigments, while CF 

captures fluorescence emitted from photosynthetic activity. Hence, these two types of imaging are 
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also expected to have correlations with harvested biomass, but not higher than traits from RGB 

sideview imaging. Combining all possible traits from RGB sideview imaging, SI, and CF is 

expected to yield the highest accuracy in biomass estimation. On the other hand, combining RGB 

sideview imaging with either SI or CF is expected to result in a lower biomass estimation accuracy, 

although it is still higher than using only RGB sideview imaging. This study will therefore 

investigate one main research question and two sub-research questions, which are: 

 

Main research question: 

1. Can the combination of RGB sideview traits with spectral topview imaging traits, and 

chlorophyll fluorescence traits improve the accuracy of biomass estimation model of pea 

under drought stress?  

 

Sub research questions: 

1.1 Is there a relationship among harvested biomass, RGB sideview traits, spectral topview 

imaging traits, and chlorophyll fluorescence traits in pea under drought stress? 

1.2 Which image-based phenotypic traits is contributing most to the highest accuracy of 

biomass estimation model?
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Chapter 2: Materials and methods 
 

This research consists of four parts. First, a greenhouse experiment was conducted with 180 pea 

genotypes at two different levels of water supply. Second, all plants were measured for image-

based traits using different camera systems, and the plants were destructively harvested for 

biomass traits. Third, imaging data was extracted, and the data was then used for the data analysis. 

The mean differences in each trait between plants grown in control and drought conditions was 

investigated. Additionally, the correlation between image-based traits and the biomass of the 

destructive harvest was determined. Fourth, biomass estimation models were formulated and 

evaluated. The conceptual research framework is shown in Figure 2.1, and the details of each 

method are described in the following sections. 

 

 

Figure 2.1 Research framework summarized in the approach. Short description of methodology. 

Abbreviations: FC: Field Capacity, NPEC: the Netherlands Plant Eco-phenotyping Centre. 

 

2.1 Experimental design 

A pot experiment was conducted in an environmentally controlled greenhouse (the Netherlands 

Plant Eco-phenotyping Centre (NPEC) greenhouse, Wageningen University and Research, the 

Netherlands). There were two factors in this study, which were pea genotypes and water irrigation. 






































































































































