€5.7 million towards future-proof lettuce varieties

Guido van den Ackerveken

A new €5.7 million research project has been set up in order to make lettuce more resistant to pathogens and the effects of climate change as well as to improve its performance in new growing systems. To this end, researchers from institutions including Utrecht University will map the properties and genetic codes of 500 wild and cultivated lettuce varieties. ‘Our aim is to combine the most advantageous properties of these lettuce varieties into new varieties that will eventually end up on our plate.’

The LettuceKnow project, led by Utrecht University Professor Guido van den Ackerveken, has attracted a 4 million euro Perspectief grant from the Netherlands Organisation for Scientific Research (NWO). Six major seed-breeding companies have topped up this sum with an additional 1.7 million euros to ensure the project’s viability.

This will result in a great deal of important information about how lettuce grows and regulates its resistance
Prof. Dr. Guido van den Ackerveken – Future Food, Faculty of Science

Thanks to the work done in the past to map the genomes of such key food crops as corn and tomato, breeding new varieties of these crops has yielded significant results. ‘However, we have only made slow progress so far with lettuce, even though it is one of the main vegetable crops,’ says Guido van den Ackerveken. ‘This fact is in spite of the Netherlands Centre for Genetic Resources owning more than 2,000 wild and cultivated lettuce varieties from the Mediterranean and South-West Asia.’

To remedy this deficit, twelve research groups convened by Utrecht University, University Medical Center Utrecht, Wageningen University & Research and Leiden University will map a broad range of properties pertaining to 500 of these lettuce varieties in order to build a vast knowledge database for the benefit of research into the growth and resistance of leafy vegetables.

They will use technology to make exact measurements of external characteristics and investigate how the crops respond to a range of external stimuli, such as pathogens and saline stress, in order to map the activity of all 30,000 or so lettuce genes.

‘This process will result in a great deal of important information about how lettuce grows and regulates its resistance,’ Van den Ackerveken believes. ‘If we could harness this genetic information for data analysis purposes, we could identify the underlying hereditary properties. In the second part of the study, we will look at which of these properties we can use to breed new cultivated varieties of lettuce.’

Future Food Utrecht

LettuceKnow is part of the research hub Future Food Utrecht. This hub focuses on the societal challenge of ensuring that future generations have access to sufficient food and a healthy diet. Through their fundamental research, Utrecht University’s scientists contribute to the sustainable innovation of food production, the development of a healthy diet and the promotion of smart food choices.

Their efforts will enable the cultivation of lettuce varieties that are ideally suited to dry and hot circumstances, saline soil or vertical farming. Moreover, Van den Ackerveken expects that the knowledge thus acquired will also be applicable in fields other than lettuce breeding. ‘Lettuce is a member of the composite vegetable family. Although this plant family is the largest around, none of its members have so far been investigated as intensively as we will do with lettuce. Consequently, I expect that the knowledge acquired through LettuceKnow will also be useful for research into other composite vegetables, such as Belgian endive, sunflower and other leafy vegetables.’

This project is a collaboration of Utrecht University, Wageningen University & Research, Leiden University, University Medical Center Utrecht, Bejo Zaden, the Netherlands Centre for Genetic Resources, ENZA Zaden, Rijk Zwaan, Syngenta, Takii & Co. Ltd and Vilmorin & Cie.

NPEC Newsletter


Winter School on Image Analysis for Plant Phenotyping

7th International Plant Phenotyping Symposium

Latest News

Multi-environment climate chambers

16 March 2021

NPEC’s multi-environment module will host a series of 15 small climate chambers with the highest level of homogeneity in temperature, humidity and light intensity available.

Read more

Helios: high-throughput shoot phenotyping of plant-microbe interactions

16 March 2021

We are happy to announce the arrival of NPEC’s Helios phenotyping facility for the quantitive description of shoot architectural traits and the localisation and quantification of fluorescent proteins expressed by plant shoots or associated microorganisms.

Read more

Hades: high-throughput fluorescence-based phenotyping of in vitro root systems

16 March 2021

Together with our partner, Photon Systems Instruments, we are currently finalising the designs for the NPEC’s high-throughput in vitro root phenotyper, the Hades. The system will enable quantitive description of root growth and architecture, and the localisation and quantification of fluorescent proteins expressed by plant roots or by root-associated microorganisms.

Read more